1,946 research outputs found

    Active Optical Remote Sensing Sensors and Instrumentation for NASAs Future Earth and Space Science Measurements/Missions

    Get PDF
    AbstractActive optical (Laser/Lidar) measurement techniques are critical for the future National Aeronautics and Space Administration (NASA) Earth, Planetary Science, Exploration, and Aeronautics measurements. The latest science decadal surveys recommend a number of missions requiring active optical systems to meet the science measurement objectives and the aeronautics community continues to use Laser/Lidar technologies to meet the aeronautics measurement objectives. This presentation will provide an overview of NASA efforts in developing and maturing state-of-the-art advanced solid-state flight laser/lidar systems for airborne and space-borne remote sensing measurements. The presentation will also provide details of a strategic approach for active optical technologies and techniques to meet the NASAs future Earth and Space Science measurement ments for space-based applications

    An integral fluctuation theorem for systems with unidirectional transitions

    Full text link
    The fluctuations of a Markovian jump process with one or more unidirectional transitions, where Rij>0R_{ij} >0 but Rji=0R_{ji} =0, are studied. We find that such systems satisfy an integral fluctuation theorem. The fluctuating quantity satisfying the theorem is a sum of the entropy produced in the bidirectional transitions and a dynamical contribution which depends on the residence times in the states connected by the unidirectional transitions. The convergence of the integral fluctuation theorem is studied numerically, and found to show the same qualitative features as in systems exhibiting microreversibility.Comment: 14 pages, 3 figure

    Current in nanojunctions : Effects of reservoir coupling

    Full text link
    We study the effect of system reservoir coupling on currents flowing through quantum junctions. We consider two simple double-quantum dot configurations coupled to two external fermionic reservoirs and study the net current flowing between the two reservoirs. The net current is partitioned into currents carried by the eigenstates of the system and by the coherences between the eigenstates induced due to coupling with the reservoirs. We find that current carried by populations is always positive whereas current carried by coherences are negative for large couplings. This results in a non-monotonic dependence of the net current on the coupling strength. We find that in certain cases, the net current can vanish at large couplings due to cancellation between currents carried by the eigenstates and by the coherences. These results provide new insights into the non-trivial role of system-reservoir couplings on electron transport through quantum dot junctions. In the presence of weak coulomb interactions, net current as a function of system reservoir coupling strength shows similar trends as for the non-interacting case.Comment: 9 pages, 12 figure

    Statistics of an adiabatic charge pump

    Full text link
    We investigate the effect of time-dependent cyclic-adiabatic driving on the charge transport in quantum junction. We propose a nonequilibrium Greens function formalism to study statistics of the charge pumped (at zero bias) through the junction. The formulation is used to demonstrate charge pumping in a single electronic level coupled to two (electronic) reservoirs with time dependent couplings. Analytical expression for the average pumped current for a general cyclic driving is derived. It is found that for zero bias, for a certain class of driving, the Berry phase contributes only to the odd cumulants. To contrast, a quantum master equation formulation does not show Berry-phase effect at all
    corecore