12 research outputs found

    An improved method for generating axenic entomopathogenic nematodes.

    Get PDF
    BACKGROUND: Steinernema carpocapsae are parasitic nematodes that invade and kill insects. The nematodes are mutualistically associated with the bacteria Xenorhabdus nematophila and together form an excellent model to study pathogen infection processes and host anti-nematode/antibacterial immune responses. To determine the contribution of S. carpocapsae and their associated X. nematophila to the successful infection of insects as well as to investigate the interaction of each mutualistic partner with the insect immune system, it is important to develop and establish robust methods for generating nematodes devoid of their bacteria. FINDINGS: To produce S. carpocapsae nematodes without their associated X. nematophila bacteria, we have modified a previous method, which involves the use of a X. nematophila rpoS mutant strain that fails to colonize the intestine of the worms. We confirmed the absence of bacteria in the nematodes using a molecular diagnostic and two rounds of an axenicity assay involving appropriate antibiotics and nematode surface sterilization. We used axenic and symbiotic S. carpocapsae to infect Drosophila melanogaster larvae and found that both types of nematodes were able to cause insect death at similar rates. CONCLUSION: Generation of entomopathogenic nematodes lacking their mutualistic bacteria provides an excellent tool to dissect the molecular and genetic basis of nematode parasitism and to identify the insect host immune factors that participate in the immune response against nematode infections

    Evolution and Function of Thioester-Containing Proteins and the Complement System in the Innate Immune Response

    No full text
    The innate immune response is evolutionary conserved among organisms. The complement system forms an important and efficient immune defense mechanism. It consists of plasma proteins that participate in microbial detection, which ultimately results in the production of various molecules with antimicrobial activity. Thioester-containing proteins (TEPs) are a superfamily of secreted effector proteins. In vertebrates, certain TEPs act in the innate immune response by promoting recruitment of immune cells, phagocytosis, and direct lysis of microbial invaders. Insects are excellent models for dissecting the molecular basis of innate immune recognition and response to a wide range of microbial infections. Impressive progress in recent years has generated crucial information on the role of TEPs in the antibacterial and antiparasite response of the tractable model insect Drosophila melanogaster and the mosquito malaria vector Anopheles gambiae. This knowledge is critical for better understanding the evolution of TEPs and their involvement in the regulation of the host innate immune system

    The insulin receptor substrate Chico regulates antibacterial immune function in Drosophila.

    Get PDF
    BACKGROUND: Molecular and genetic studies in model organisms have recently revealed a dynamic interplay between immunity and ageing mechanisms. In the fruit fly Drosophila melanogaster, inhibition of the insulin/insulin-like growth factor signaling pathway prolongs lifespan, and mutations in the insulin receptor substrate Chico extend the survival of mutant flies against certain bacterial pathogens. Here we investigated the immune phenotypes, immune signaling activation and immune function of chico mutant adult flies against the virulent insect pathogen Photorhabdus luminescens as well as to non-pathogenic Escherichia coli bacteria. RESULTS: We found that D. melanogaster chico loss-of-function mutant flies were equally able to survive infection by P. luminescens or E. coli compared to their background controls, but they contained fewer numbers of bacterial cells at most time-points after the infection. Analysis of immune signaling pathway activation in flies infected with the pathogenic or the non-pathogenic bacteria showed reduced transcript levels of antimicrobial peptide genes in the chico mutants than in controls. Evaluation of immune function in infected flies revealed increased phenoloxidase activity and melanization response to P. luminescens and E. coli together with reduced phagocytosis of bacteria in the chico mutants. Changes in the antibacterial immune function in the chico mutants was not due to altered metabolic activity. CONCLUSIONS: Our results indicate a novel role for chico in the regulation of the antibacterial immune function in D. melanogaster. Similar studies will further contribute to a better understanding of the interconnection between ageing and immunity and lead to the identification and characterization of the molecular host components that modulate both important biological processes

    Pre-exposure to non-pathogenic bacteria does not protect Drosophila against the entomopathogenic bacterium Photorhabdus.

    No full text
    Immune priming in insects involves an initial challenge with a non-pathogenic microbe or exposure to a low dose of pathogenic microorganisms, which provides a certain degree of protection against a subsequent pathogenic infection. The protective effect of insect immune priming has been linked to the activation of humoral or cellular features of the innate immune response during the preliminary challenge, and these effects might last long enough to promote the survival of the infected animal. The fruit fly Drosophila melanogaster is a superb model to dissect immune priming processes in insects due to the availability of molecular and genetic tools, and the comprehensive understanding of the innate immune response in this organism. Previous investigations have indicated that the D. melanogaster immune system can be primed efficiently. Here we have extended these studies by examining the result of immune priming against two potent entomopathogenic bacteria, Photorhabdus luminescens and P. asymbiotica. We have found that rearing D. melanogaster on diet containing a non-pathogenic strain of Escherichia coli alone or in combination with Micrococcus luteus upregulates the antibacterial peptide immune response in young adult flies, but it does not prolong fly life span. Also, subsequent intrathoracic injection with P. luminescens or P. asymbiotica triggers the Immune deficiency and Toll signaling pathways in flies previously exposed to a live or heat-killed mix of the non-pathogenic bacteria, but the immune activation fails to promote fly survival against the pathogens. These findings suggest that immune priming in D. melanogaster, and probably in other insects, is determined by the type of microbes involved as well as the mode of microbial exposure, and possibly requires a comprehensive and precise alteration of immune signaling and function to provide efficient protection against pathogenic infection

    Intrinsic TGF-β signaling promotes age-dependent CD8+ T cell polyfunctionality attrition.

    No full text
    Advanced age is associated with immune system deficits that result in an increased susceptibility to infectious diseases; however, specific mediators of age-dependent immune dysfunction have not been fully elucidated. Here we demonstrated that aged mice exhibit poor effector CD8(+) T cell polyfunctionality, primarily due to CD8(+) T cell–extrinsic deficits, and that reduced CD8(+) T cell polyfunctionality correlates with increased susceptibility to pathogenic diseases. In aged animals challenged with the parasite Encephalitozoon cuniculi, effector CD8(+) T cell survival and polyfunctionality were suppressed by highly elevated TGF-β1. Furthermore, TGF-β depletion reduced effector CD8(+) T cell apoptosis in both young and aged mice and enhanced effector CD8(+) T cell polyfunctionality in aged mice. Surprisingly, intrinsic blockade of TGF-β signaling in CD8(+) T cells was sufficient to rescue polyfunctionality in aged animals. Together, these data demonstrate that low levels of TGF-β1 promote apoptosis of CD8(+) effector T cells and high TGF-β1 levels associated with age result in both CD8(+) T cell apoptosis and an altered transcriptional profile, which correlates with loss of polyfunctionality. Furthermore, elevated TGF-β levels are observed in the elderly human population and in aged Drosophila, suggesting that TGF-β represents an evolutionarily conserved negative regulator of the immune response in aging organisms
    corecore