420 research outputs found

    Cryptococcus neoformans chitin synthase 3 plays a critical role in dampening host inflammatory responses

    Get PDF
    Cryptococcus neoformans is the most common disseminated fungal pathogen in AIDS patients, resulting in ∼200,000 deaths each year. There is a pressing need for new treatments for this infection, as current antifungal therapy is hampered by toxicity and/or the inability of the host’s immune system to aid in resolution of the disease. An ideal target for new therapies is the fungal cell wall. The cryptococcal cell wall is different from the cell walls of many other pathogenic fungi in that it contains chitosan. Strains that have decreased chitosan are less pathogenic and strains that are deficient in chitosan are avirulent and can induce protective responses. In this study, we investigated the host responses to a chs3Δ strain, a chitosan-deficient strain, and found that mice inoculated with the chs3Δ strain all died within 36 h and that death was associated with an aberrant hyperinflammatory immune response driven by neutrophils, indicating that chitosan is critical in modulating the immune response to Cryptococcus.Cryptococcus neoformans infections are significant causes of morbidity and mortality among AIDS patients and the third most common invasive fungal infection in organ transplant recipients. One of the main interfaces between the fungus and the host is the fungal cell wall. The cryptococcal cell wall is unusual among human-pathogenic fungi in that the chitin is predominantly deacetylated to chitosan. Chitosan-deficient strains of C. neoformans were found to be avirulent and rapidly cleared from the murine lung. Moreover, infection with a chitosan-deficient C. neoformans strain lacking three chitin deacetylases (cda1Δcda2Δcda3Δ) was found to confer protective immunity to a subsequent challenge with a virulent wild-type counterpart. In addition to the chitin deacetylases, it was previously shown that chitin synthase 3 (Chs3) is also essential for chitin deacetylase-mediated formation of chitosan. Mice inoculated with the chs3Δ strain at a dose previously shown to induce protection with the cda1Δcda2Δcda3Δ strain die within 36 h after installation of the organism. Mortality was not dependent on viable fungi, as mice inoculated with a heat-killed preparation of the chs3Δ strain died at the same rate as mice inoculated with a live chs3Δ strain, suggesting that the rapid onset of death was host mediated, likely caused by an overexuberant immune response. Histology, cytokine profiling, and flow cytometry indicate a massive neutrophil influx in the mice inoculated with the chs3Δ strain. Mice depleted of neutrophils survived chs3Δ inoculation, indicating that death was neutrophil mediated. Altogether, these studies lead us to conclude that Chs3, along with chitosan, plays critical roles in dampening cryptococcus-induced host inflammatory responses

    Role of the ubiquitin proteasome system in Alzheimer's disease

    Get PDF
    Though Alzheimer's disease (AD) is a syndrome with well-defined clinical and neuropathological manifestations, an array of molecular defects underlies its pathology. A role for the ubiquitin proteasome system (UPS) was suspected in the pathogenesis of AD since the presence of ubiquitin immunoreactivity in AD-related neuronal inclusions, such as neurofibrillary tangles, is seen in all AD cases. Recent studies have indicated that components of the UPS could be linked to the early phase of AD, which is marked by synaptic dysfunction, as well as to the late stages of the disease, characterized by neurodegeneration. Insoluble protein aggregates in the brain of AD patients could result from malfunction or overload of the UPS, or from structural changes in the protein substrates, which prevent their recognition and degradation by the UPS. Defective proteolysis could cause the synaptic dysfunction observed early in AD since the UPS is known to play a role in the normal functioning of synapses. In this review, we discuss recent observations on possible links between the UPS and AD, and the potential for utilizing UPS components as targets for treatment of this disease

    Site Preferences for Cobalt and Cobalt-Titanium in Substituted Barium

    Get PDF

    A Rare Case of Lung Hypoplasia, Cardiac Anomalies and Ovarian Tumour in a Patient with MRKH Syndrome

    Get PDF
    Hypoplasia of the lung is an uncommon congenital abnormality of the respiratory system in contrast to Pulmonary agenesis. Mayer-Rokitansky-Küster-Hauser (MRKH) syndrome is the congenital absence of the upper two-thirds of the vagina and uterus with normal secondary sexual characteristics, ovary, and normal karyotype. Here we describe a case of left lung hypoplasia and congenital cardiac malformations with MRKH syndrome and Leiomyoma of the ovary. A 31-year-old female presented with cough with expectoration, left side chest pain and breathlessness for four years to Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER). She was evaluated for amenorrhea and diagnosed as MRKH syndrome and the patient underwent right side oophorectomy for right ovarian torsion with a tumour. Computed Tomography Pulmonary Angiogram (CTPA) and fiberoptic endoscopy were suggestive of left lung hypoplasia, and the patient was advised symptomatic treatment for lung hypoplasia and planned for vaginoplasty. Keywords: Pulmonary hypoplasia, Infertility, Mullerian aplasia, congenital bronchiectasis, Left-sided superior vena cava, ovarian Leiomyoma

    Cell wall composition in Cryptococcus neoformans is media dependent and alters host response, inducing protective immunity

    Get PDF
    INTRODUCTION: OBJECTIVE: The purpose of this study was to determine how different media influenced the amount of chitin and chitosan in the cell wall, which in turn impacted the cell wall architecture and host response. METHODS: Yeast extract, peptone, and dextrose (YPD) and yeast nitrogen base (YNB) are two commonly used media for growing Cryptococcus before use in in vitro or in vivo experiments. As a result, RESULTS: We observed that the growth of wild-type CONCLUSION: These findings emphasize the importance of culture media and pH during growth in shaping the content and organization of th

    Differential metabolism of alprazolam by liver and brain cytochrome (P4503A) to pharmacologically active metabolite

    Get PDF
    Cytochrome P450 (P450) is a superfamily of enzymes which mediates metabolism of xenobiotics including drugs. Alprazolam, an anti-anxiety agent, is metabolized in rat and human liver by P4503A1 and P4503A4 respectively, to 4-hydroxy alprazolam (4-OHALP, pharmacologically less active) and α-hydroxy alprazolam (α-OHALP, pharmacologically more active). We examined P450 mediated metabolism of alprazolam by rat and human brain microsomes and observed that the relative amount of α-OHALP formed in brain was higher than liver. This biotransformation was mediated by a P450 isoform belonging to P4503A subfamily, which is constitutively expressed in neuronal cells in rat and human brain. The formation of larger amounts of α-OHALP in neurons points to local modulation of pharmacological activity in brain, at the site of action of the anti-anxiety drug. Since hydroxy metabolites of alprazolam are hydrophilic and not easily cleared through blood-CSF barrier, α-OHALP would potentially have a longer half-life in brain

    Constitutive expression and localization of the major drug metabolizing enzyme, cytochrome P4502D in human brain

    Get PDF
    Cytochrome P4502D6, an important isoform of cytochrome P450, mediates the metabolism of several psychoactive drugs in liver. Quantitatively, liver is the major drug metabolizing organ, however metabolism of drugs in brain could modulate pharmacological and pharmacodynamic effects of psychoactive drugs at their site of action and explain some of the variation typically seen in patient population. We have measured cytochrome P450 content and examined constitutive expression of CYP2D mRNA and protein in human brain regions by reverse transcription polymerase chain reaction, Northern and immunoblotting and localized it by in situ hybridization and immunohistochemistry. CYP2D mRNA was expressed constitutively in neurons of cerebral cortex, Purkinje and granule cell layers of cerebellum, reticular neurons of midbrain and pyramidal neurons of CA1, CA2 and CA3 subfields of hippocampus. Immunoblot studies demonstrated the presence of cytochrome P4502D protein in cortex, cerebellum, midbrain, striatum and thalamus of human brain. Immunohistochemical localization showed the predominant presence of cytochrome P4502D not only in neuronal soma but also in dendrites of Purkinje and cortical neurons. These studies demonstrate constitutive expression of cytochrome P4502D in neuronal cell population in human brain, indicating its possible role in metabolism of psychoactive drugs directly at or near their site of action, in neurons, in human brain

    Terahertz magneto-optical spectroscopy of two-dimensional hole and electron systems

    Full text link
    We have used terahertz (THz) magneto-optical spectroscopy to investigate the cyclotron resonance in high mobility two-dimensional electron and hole systems. Our experiments reveal long-lived (~20 ps) coherent oscillations in the measured signal in the presence of a perpendicular magnetic field. The cyclotron frequency extracted from the oscillations varies linearly with magnetic field for a two-dimensional electron gas (2DEG), as expected. However, we find that the complex non-parabolic valence band structure in a two-dimensional hole gas (2DHG) causes the cyclotron frequency and effective mass to vary nonlinearly with the magnetic field, as verified by multiband Landau level calculations. This is the first time that THz magneto-optical spectroscopy has been used to study 2DHG, and we expect that these results will motivate further studies of these unique 2D nanosystems.Comment: 11 pages, 7 figure
    corecore