23 research outputs found

    Cryptococcus neoformans chitin synthase 3 plays a critical role in dampening host inflammatory responses

    Get PDF
    Cryptococcus neoformans is the most common disseminated fungal pathogen in AIDS patients, resulting in ∼200,000 deaths each year. There is a pressing need for new treatments for this infection, as current antifungal therapy is hampered by toxicity and/or the inability of the host’s immune system to aid in resolution of the disease. An ideal target for new therapies is the fungal cell wall. The cryptococcal cell wall is different from the cell walls of many other pathogenic fungi in that it contains chitosan. Strains that have decreased chitosan are less pathogenic and strains that are deficient in chitosan are avirulent and can induce protective responses. In this study, we investigated the host responses to a chs3Δ strain, a chitosan-deficient strain, and found that mice inoculated with the chs3Δ strain all died within 36 h and that death was associated with an aberrant hyperinflammatory immune response driven by neutrophils, indicating that chitosan is critical in modulating the immune response to Cryptococcus.Cryptococcus neoformans infections are significant causes of morbidity and mortality among AIDS patients and the third most common invasive fungal infection in organ transplant recipients. One of the main interfaces between the fungus and the host is the fungal cell wall. The cryptococcal cell wall is unusual among human-pathogenic fungi in that the chitin is predominantly deacetylated to chitosan. Chitosan-deficient strains of C. neoformans were found to be avirulent and rapidly cleared from the murine lung. Moreover, infection with a chitosan-deficient C. neoformans strain lacking three chitin deacetylases (cda1Δcda2Δcda3Δ) was found to confer protective immunity to a subsequent challenge with a virulent wild-type counterpart. In addition to the chitin deacetylases, it was previously shown that chitin synthase 3 (Chs3) is also essential for chitin deacetylase-mediated formation of chitosan. Mice inoculated with the chs3Δ strain at a dose previously shown to induce protection with the cda1Δcda2Δcda3Δ strain die within 36 h after installation of the organism. Mortality was not dependent on viable fungi, as mice inoculated with a heat-killed preparation of the chs3Δ strain died at the same rate as mice inoculated with a live chs3Δ strain, suggesting that the rapid onset of death was host mediated, likely caused by an overexuberant immune response. Histology, cytokine profiling, and flow cytometry indicate a massive neutrophil influx in the mice inoculated with the chs3Δ strain. Mice depleted of neutrophils survived chs3Δ inoculation, indicating that death was neutrophil mediated. Altogether, these studies lead us to conclude that Chs3, along with chitosan, plays critical roles in dampening cryptococcus-induced host inflammatory responses

    Cryptococcus at work: Gene expression during human infection

    Get PDF
    Meningitis is a frequent manifestation of infection due to Cryptococcus neoformans and a major cause of increased morbidity in patients with AIDS. Numerous in vitro gene expression and genetic studies of the fungus have predicted a myriad of genes, pathways, and biological processes that may be critical for pathogenesis, and many studies using animal models have supported the role of these processes during infection. However, the relevance of these hypotheses based on in vitro and animal models has often been questioned. A recent study by Chen et al. [Y. Chen, D. L. Toffaletti, J. L. Tenor, A. P. Litvintseva, C. Fang, T. G. Mitchell, T. R. McDonald, K. Nielsen, D. R. Boulware, T. Bicanic, and J. R. Perfect, mBio 5(1):e01087-13, 2014] represents an important step in understanding the cryptococcal response during human infection

    Global transcriptome profile of Cryptococcus neoformans during exposure to hydrogen peroxide induced oxidative stress

    Get PDF
    The ability of the opportunistic fungal pathogen Cryptococcus neoformans to resist oxidative stress is one of its most important virulence related traits. To cope with the deleterious effect of cellular damage caused by the oxidative burst inside the macrophages, C. neoformans has developed multilayered redundant molecular responses to neutralize the stress, to repair the damage and to eventually grow inside the hostile environment of the phagosome. We used microarray analysis of cells treated with hydrogen peroxide (H(2)O(2)) at multiple time points in a nutrient defined medium to identify a transcriptional signature associated with oxidative stress. We discovered that the composition of the medium in which fungal cells were grown and treated had a profound effect on their capacity to degrade exogenous H(2)O(2). We determined the kinetics of H(2)O(2) breakdown by growing yeast cells under different conditions and accordingly selected an appropriate media composition and range of time points for isolating RNA for hybridization. Microarray analysis revealed a robust transient transcriptional response and the intensity of the global response was consistent with the kinetics of H(2)O(2) breakdown by treated cells. Gene ontology analysis of differentially expressed genes related to oxidation-reduction, metabolic process and protein catabolic processes identified potential roles of mitochondrial function and protein ubiquitination in oxidative stress resistance. Interestingly, the metabolic pathway adaptation of C. neoformans to H(2)O(2) treatment was remarkably distinct from the response of other fungal organisms to oxidative stress. We also identified the induction of an antifungal drug resistance response upon the treatment of C. neoformans with H(2)O(2). These results highlight the complexity of the oxidative stress response and offer possible new avenues for improving our understanding of mechanisms of oxidative stress resistance in C. neoformans

    Cell wall composition in Cryptococcus neoformans is media dependent and alters host response, inducing protective immunity

    Get PDF
    INTRODUCTION: OBJECTIVE: The purpose of this study was to determine how different media influenced the amount of chitin and chitosan in the cell wall, which in turn impacted the cell wall architecture and host response. METHODS: Yeast extract, peptone, and dextrose (YPD) and yeast nitrogen base (YNB) are two commonly used media for growing Cryptococcus before use in in vitro or in vivo experiments. As a result, RESULTS: We observed that the growth of wild-type CONCLUSION: These findings emphasize the importance of culture media and pH during growth in shaping the content and organization of th

    Membrane integrity contributes to resistance of Cryptococcus neoformans to the cell wall inhibitor caspofungin

    Get PDF
    The fungal pathogen Cryptococcus neoformans causes up to 278 000 infections each year globally, resulting in up to 180,000 deaths annually, mostly impacting immunocompromised people. Therapeutic options for C. neoformans infections are very limited. Caspofungin, a member of the echinocandin class of antifungals, is generally well tolerated but clinically ineffective against C. neoformans. We sought to identify biological processes that can be targeted to render the cell more susceptible to echinocandins by screening the available libraries of gene deletion mutants made in the KN99α background for caspofungin sensitivity. We adapted a Candida albicans fungal biofilm assay for the growth characteristics of C. neoformans and systematically screened 4,030 individual gene deletion mutants in triplicate plate assays. We identified 25 strains that showed caspofungin sensitivity. We followed up with a dose dependence assay, and 17 of the 25 were confirmed sensitive, 5 of which were also sensitive in an agar plate assay. We made new deletion mutant strains for four of these genes

    Cross talk between the Cell Wall Integrity and Cyclic AMP/Protein Kinase A pathways in Cryptococcus neoformans

    Get PDF
    Cryptococcus neoformans is a fungal pathogen of immunocompromised people that causes fatal meningitis. The fungal cell wall is essential to viability and pathogenesis of C. neoformans, and biosynthesis and repair of the wall is primarily controlled by the cell wall integrity (CWI) signaling pathway. Previous work has shown that deletion of genes encoding the four major kinases in the CWI signaling pathway, namely, PKC1, BCK1, MKK2, and MPK1 results in severe cell wall phenotypes, sensitivity to a variety of cell wall stressors, and for Mpk1, reduced virulence in a mouse model. Here, we examined the global transcriptional responses to gene deletions of BCK1, MKK2, and MPK1 compared to wild-type cells. We found that over 1,000 genes were differentially expressed in one or more of the deletion strains, with 115 genes differentially expressed in all three strains, many of which have been identified as genes regulated by the cyclic AMP (cAMP)/protein kinase A (PKA) pathway. Biochemical measurements of cAMP levels in the kinase deletion strains revealed significantly less cAMP in all of the deletion strains compared to the wild-type strain. The deletion strains also produced significantly smaller capsules than the wild-type KN99 strain did under capsule-inducing conditions, although the levels of capsule they shed were similar to those shed by the wild type. Finally, addition of exogenous cAMP led to reduced sensitivity to cell wall stress and restored surface capsule to levels near those of wild type. Thus, we have direct evidence of cross talk between the CWI and cAMP/PKA pathways that may have important implications for regulation of cell wall and capsule homeostasis

    Induction of Protective Immunity to Cryptococcal Infection in Mice by a Heat-Killed, Chitosan-Deficient Strain of Cryptococcus neoformans

    Get PDF
    Cryptococcus neoformans is a major opportunistic fungal pathogen that causes fatal meningoencephalitis in immunocompromised individuals and is responsible for a large proportion of AIDS-related deaths. The fungal cell wall is an essential organelle which undergoes constant modification during various stages of growth and is critical for fungal pathogenesis. One critical component of the fungal cell wall is chitin, which in C. neoformans is predominantly deacetylated to chitosan. We previously reported that three chitin deacetylase (CDA) genes have to be deleted to generate a chitosan-deficient C. neoformans strain. This cda1Δ2Δ3Δ strain was avirulent in mice, as it was rapidly cleared from the lungs of infected mice. Here, we report that clearance of the cda1Δ2Δ3Δ strain was associated with sharply spiked concentrations of proinflammatory molecules that are known to be critical mediators of the orchestration of a protective Th1-type adaptive immune response. This was followed by the selective enrichment of the Th1-type T cell population in the cda1Δ2Δ3Δ strain-infected mouse lung. Importantly, this response resulted in the development of robust protective immunity to a subsequent lethal challenge with a virulent wild-type C. neoformans strain. Moreover, protective immunity was also induced in mice vaccinated with heat-killed cda1Δ2Δ3Δ cells and was effective in multiple mouse strains. The results presented here provide a strong framework to develop the cda1Δ2Δ3Δ strain as a potential vaccine candidate for C. neoformans infection

    Cryptococcus neoformans Cda1 and Its Chitin Deacetylase Activity Are Required for Fungal Pathogenesis

    Get PDF
    Cryptococcus neoformans is unique among fungal pathogens that cause disease in a mammalian host, as it secretes a polysaccharide capsule that hinders recognition by the host to facilitate its survival and proliferation. Even though it causes serious infections in immunocompromised hosts, reports of infection in hosts that are immunocompetent are on the rise. The cell wall of a fungal pathogen, its synthesis, composition, and pathways of remodelling are attractive therapeutic targets for the development of fungicides. Chitosan, a polysaccharide in the cell wall of C. neoformans is one such target, as it is critical for pathogenesis and absent in the host. The results we present shed light on the importance of one of the chitin deacetylases that synthesize chitosan during infection and further implicates chitosan as being a critical factor for the pathogenesis of C. neoformans.Chitin is an essential component of the cell wall of Cryptococcus neoformans conferring structural rigidity and integrity under diverse environmental conditions. Chitin deacetylase genes encode the enyzmes (chitin deacetylases [Cdas]) that deacetylate chitin, converting it to chitosan. The functional role of chitosan in the fungal cell wall is not well defined, but it is an important virulence determinant of C. neoformans. Mutant strains deficient in chitosan are completely avirulent in a mouse pulmonary infection model. C. neoformans carries genes that encode three Cdas (Cda1, Cda2, and Cda3) that appear to be functionally redundant in cells grown under vegetative conditions. Here we report that C. neoformans Cda1 is the principal Cda responsible for fungal pathogenesis. Point mutations were introduced in the active site of Cda1 to generate strains in which the enzyme activity of Cda1 was abolished without perturbing either its stability or localization. When used to infect CBA/J mice, Cda1 mutant strains produced less chitosan and were attenuated for virulence. We further demonstrate that C. neoformans Cda genes are transcribed differently during a murine infection from what has been measured in vitro

    Transcript abundance of <i>C. neoformans CCP1</i> and <i>AOX1</i> at various time points during H<sub>2</sub>O<sub>2</sub> treatment.

    No full text
    <p>Transcript abundance of <i>C. neoformans CCP1</i> and <i>AOX1</i> at various time points during H<sub>2</sub>O<sub>2</sub> treatment.</p

    Chitosan biosynthesis and virulence in the human fungal pathogen Cryptococcus gattii [preprint]

    Get PDF
    Cryptococcus gattii R265 is a hyper-virulent fungal strain responsible for the major outbreak of cryptococcosis in Vancouver Island of British Columbia in 1999. It differs significantly from C. neoformans in its natural environment, its preferred site in the mammalian host, and in the nature and mode of pathogenesis. Our previous studies in C. neoformans have shown that the presence of chitosan, the deacetylated form of chitin, in the cell wall attenuates inflammatory responses in the host, while its absence induces robust immune responses, which in turn facilitate clearance of the fungus and induces a protective response. The results of the present investigation reveal that the cell wall of C. gattii R265 contains 2-3-fold higher amount of chitosan compared to that of C. neoformans. The genes responsible for the biosynthesis of chitosan are highly conserved in the R265 genome; the roles of the three chitin deacetylases (CDA) have however, been modified. To deduce their roles, single, double and a triple CDA deletion strains were constructed in a R265 background and were subjected to mammalian infection studies. Unlike C. neoformans where Cda1 has a discernible role in fungal pathogenesis, in R265 Cda3 is critical for virulence. Deletion of either CDA3 alone (cda3Δ) or in combination with either CDA1 (cda1Δ3Δ) or CDA2 (cda2Δ3Δ) or both (cda1Δ2Δ3Δ) rendered the yeast cells avirulent and were cleared from the infected host. Moreover, the cda1Δ2Δ3Δ strain of R265 induced a protective response to a subsequent infection with R265. These studies shed more light into the regulation of chitosan biosynthesis of C. gattii and its subsequent effect on fungal virulence
    corecore