27 research outputs found

    Inference of malaria reproduction numbers in three elimination settings by combining temporal data and distance metrics

    Get PDF
    Individual-level geographic information about malaria cases, such as the GPS coordinates of residence or health facility, is often collected as part of surveillance in near-elimination settings, but could be more effectively utilised to infer transmission dynamics, in conjunction with additional information such as symptom onset time and genetic distance. However, in the absence of data about the flow of parasites between populations, the spatial scale of malaria transmission is often not clear. As a result, it is important to understand the impact of varying assumptions about the spatial scale of transmission on key metrics of malaria transmission, such as reproduction numbers. We developed a method which allows the flexible integration of distance metrics (such as Euclidian distance, genetic distance or accessibility matrices) with temporal information into a single inference framework to infer malaria reproduction numbers. Twelve scenarios were defined, representing different assumptions about the likelihood of transmission occurring over different geographic distances and likelihood of missing infections (as well as high and low amounts of uncertainty in this estimate). These scenarios were applied to four individual level datasets from malaria eliminating contexts to estimate individual reproduction numbers and how they varied over space and time. Model comparison suggested that including spatial information improved models as measured by second order AIC (ΔAICc), compared to time only results. Across scenarios and across datasets, including spatial information tended to increase the seasonality of temporal patterns in reproduction numbers and reduced noise in the temporal distribution of reproduction numbers. The best performing parameterisations assumed long-range transmission (> 200 km) was possible. Our approach is flexible and provides the potential to incorporate other sources of information which can be converted into distance or adjacency matrices such as travel times or molecular markers

    COVID-19 in Japan: insights from the first three months of the epidemic

    Get PDF
    Background Understanding the characteristics and natural history of novel pathogens is crucial to inform successful control measures. Japan was one of the first affected countries in the COVID-19 pandemic reporting their first case on 14 January 2020. Interventions including airport screening, contact tracing, and cluster investigations were quickly implemented. Here we present insights from the first 3 months of the epidemic in Japan based on detailed case data. Methods We conducted descriptive analyses based on information systematically extracted from individual case reports from 13 January to 31 March 2020 including patient demographics, date of report and symptom onset, symptom progression, travel history, and contact type. We analysed symptom progression and estimated the time-varying reproduction number, Rt, correcting for epidemic growth using an established Bayesian framework. Key delays and the age-specific probability of transmission were estimated using data on exposures and transmission pairs. Results The corrected fitted mean onset-to-reporting delay after the peak was 4 days (standard deviation: ±2 days). Early transmission was driven primarily by returning travellers with Rt peaking at 2.4 (95%CrI:1.6, 3.3) nationally. In the final week of the trusted period, Rt accounting for importations diverged from overall Rt at 1.1 (95% CrI: 1.0, 1.2) compared to 1.5 (95% CrI: 1.3, 1.6) respectively. Household (39.0%) and workplace (11.6%) exposures were the most frequently reported potential source of infection. The estimated probability of transmission was assortative by age. Across all age groups, cases most frequently onset with cough, fever, and fatigue. There were no reported cases of patients <20 years old developing pneumonia or severe respiratory symptoms. Conclusions Information collected in the early phases of an outbreak are important in characterising any novel pathogen. Timely recognition of key symptoms and high-risk settings for transmission can help to inform response strategies. The data analysed here were the result of robust and timely investigations and demonstrate the improvements to epidemic control as a result of such surveillanc

    Assessment of COVID-19 as the underlying cause of death among children and young people aged 0 to 19 years in the US.

    Get PDF
    IMPORTANCE: COVID-19 was the underlying cause of death for more than 940 000 individuals in the US, including at least 1289 children and young people (CYP) aged 0 to 19 years, with at least 821 CYP deaths occurring in the 1-year period from August 1, 2021, to July 31, 2022. Because deaths among US CYP are rare, the mortality burden of COVID-19 in CYP is best understood in the context of all other causes of CYP death. OBJECTIVE: To determine whether COVID-19 is a leading (top 10) cause of death in CYP in the US. DESIGN, SETTING, AND PARTICIPANTS: This national population-level cross-sectional epidemiological analysis for the years 2019 to 2022 used data from the US Centers for Disease Control and Prevention Wide-Ranging Online Data for Epidemiologic Research (WONDER) database on underlying cause of death in the US to identify the ranking of COVID-19 relative to other causes of death among individuals aged 0 to 19 years. COVID-19 deaths were considered in 12-month periods between April 1, 2020, and August 31, 2022, compared with deaths from leading non-COVID-19 causes in 2019, 2020, and 2021. MAIN OUTCOMES AND MEASURES: Cause of death rankings by total number of deaths, crude rates per 100 000 population, and percentage of all causes of death, using the National Center for Health Statistics 113 Selected Causes of Death, for ages 0 to 19 and by age groupings (<1 year, 1-4 years, 5-9 years, 10-14 years, 15-19 years). RESULTS: There were 821 COVID-19 deaths among individuals aged 0 to 19 years during the study period, resulting in a crude death rate of 1.0 per 100 000 population overall; 4.3 per 100 000 for those younger than 1 year; 0.6 per 100 000 for those aged 1 to 4 years; 0.4 per 100 000 for those aged 5 to 9 years; 0.5 per 100 000 for those aged 10 to 14 years; and 1.8 per 100 000 for those aged 15 to 19 years. COVID-19 mortality in the time period of August 1, 2021, to July 31, 2022, was among the 10 leading causes of death in CYP aged 0 to 19 years in the US, ranking eighth among all causes of deaths, fifth in disease-related causes of deaths (excluding unintentional injuries, assault, and suicide), and first in deaths caused by infectious or respiratory diseases when compared with 2019. COVID-19 deaths constituted 2% of all causes of death in this age group. CONCLUSIONS AND RELEVANCE: The findings of this study suggest that COVID-19 was a leading cause of death in CYP. It caused substantially more deaths in CYP annually than any vaccine-preventable disease historically in the recent period before vaccines became available. Various factors, including underreporting and not accounting for COVID-19's role as a contributing cause of death from other diseases, mean that these estimates may understate the true mortality burden of COVID-19. The findings of this study underscore the public health relevance of COVID-19 to CYP. In the likely future context of sustained SARS-CoV-2 circulation, appropriate pharmaceutical and nonpharmaceutical interventions (eg, vaccines, ventilation, air cleaning) will continue to play an important role in limiting transmission of the virus and mitigating severe disease in CYP

    COVID-19-Associated Orphanhood and Caregiver Death in the United States

    Get PDF
    Background: Most COVID-19 deaths occur among adults, not children, and attention has focused on mitigating COVID-19 burden among adults. However, a tragic consequence of adult deaths is that high numbers of children might lose their parents and caregivers to COVID-19- associated deaths. Methods: We quantified COVID-19-associated caregiver loss and orphanhood in the US and for each state using fertility and excess and COVID-19 mortality data. We assessed burden and rates of COVID-19-associated orphanhood and deaths of custodial and co-residing grandparents, overall and by race/ethnicity. We further examined variations in COVID-19-associated orphanhood by race/ethnicity for each state. Results: We found that from April 1, 2020 through June 30, 2021, over 140,000 children in the US experienced the death of a parent or grandparent caregiver. The risk of such loss was 1.1 to 4.5 times higher among children of racial and ethnic minorities, compared to Non-Hispanic White children. The highest burden of COVID-19-associated death of parents and caregivers occurred in Southern border states for Hispanic children, Southeastern states for Black children, and in states with tribal areas for American Indian/Alaska Native populations. Conclusions: We found substantial disparities in distributions of COVID-19-associated death of parents and caregivers across racial and ethnic groups. Children losing caregivers to COVID-19 need care and safe, stable, and nurturing families with economic support, quality childcare and evidence-based parenting support programs. There is an urgent need to mount an evidence-based comprehensive response focused on those children at greatest risk, in the states most affected

    Global, regional, and national minimum estimates of children affected by COVID-19-associated orphanhood and caregiver death, by age and family circumstance up to Oct 31, 2021: an updated modelling study

    Get PDF
    BACKGROUND: In the 6 months following our estimates from March 1, 2020, to April 30, 2021, the proliferation of new coronavirus variants, updated mortality data, and disparities in vaccine access increased the amount of children experiencing COVID-19-associated orphanhood. To inform responses, we aimed to model the increases in numbers of children affected by COVID-19-associated orphanhood and caregiver death, as well as the cumulative orphanhood age-group distribution and circumstance (maternal or paternal orphanhood). METHODS: We used updated excess mortality and fertility data to model increases in minimum estimates of COVID-19-associated orphanhood and caregiver deaths from our original study period of March 1, 2020-April 30, 2021, to include the new period of May 1-Oct 31, 2021, for 21 countries. Orphanhood was defined as the death of one or both parents; primary caregiver loss included parental death or the death of one or both custodial grandparents; and secondary caregiver loss included co-residing grandparents or kin. We used logistic regression and further incorporated a fixed effect for western European countries into our previous model to avoid over-predicting caregiver loss in that region. For the entire 20-month period, we grouped children by age (0-4 years, 5-9 years, and 10-17 years) and maternal or paternal orphanhood, using fertility contributions, and we modelled global and regional extrapolations of numbers of orphans. 95% credible intervals (CrIs) are given for all estimates. FINDINGS: The number of children affected by COVID-19-associated orphanhood and caregiver death is estimated to have increased by 90·0% (95% CrI 89·7-90·4) from April 30 to Oct 31, 2021, from 2 737 300 (95% CrI 1 976 100-2 987 000) to 5 200 300 (3 619 400-5 731 400). Between March 1, 2020, and Oct 31, 2021, 491 300 (95% CrI 485 100-497 900) children aged 0-4 years, 736 800 (726 900-746 500) children aged 5-9 years, and 2 146 700 (2 120 900-2 174 200) children aged 10-17 years are estimated to have experienced COVID-19-associated orphanhood. Globally, 76·5% (95% CrI 76·3-76·7) of children were paternal orphans, whereas 23·5% (23·3-23·7) were maternal orphans. In each age group and region, the prevalence of paternal orphanhood exceeded that of maternal orphanhood. INTERPRETATION: Our findings show that numbers of children affected by COVID-19-associated orphanhood and caregiver death almost doubled in 6 months compared with the amount after the first 14 months of the pandemic. Over the entire 20-month period, 5·0 million COVID-19 deaths meant that 5·2 million children lost a parent or caregiver. Our data on children's ages and circumstances should support pandemic response planning for children globally. FUNDING: UK Research and Innovation (Global Challenges Research Fund, Engineering and Physical Sciences Research Council, and Medical Research Council), Oak Foundation, UK National Institute for Health Research, US National Institutes of Health, and Imperial College London

    Global minimum estimates of children affected by COVID-19-associated orphanhood and deaths of caregivers: a modelling study

    Get PDF
    BACKGROUND: The COVID-19 pandemic priorities have focused on prevention, detection, and response. Beyond morbidity and mortality, pandemics carry secondary impacts, such as children orphaned or bereft of their caregivers. Such children often face adverse consequences, including poverty, abuse, and institutionalisation. We provide estimates for the magnitude of this problem resulting from COVID-19 and describe the need for resource allocation. METHODS: We used mortality and fertility data to model minimum estimates and rates of COVID-19-associated deaths of primary or secondary caregivers for children younger than 18 years in 21 countries. We considered parents and custodial grandparents as primary caregivers, and co-residing grandparents or older kin (aged 60–84 years) as secondary caregivers. To avoid overcounting, we adjusted for possible clustering of deaths using an estimated secondary attack rate and age-specific infection–fatality ratios for SARS-CoV-2. We used these estimates to model global extrapolations for the number of children who have experienced COVID-19-associated deaths of primary and secondary caregivers. FINDINGS: Globally, from March 1, 2020, to April 30, 2021, we estimate 1 134 000 children (95% credible interval 884 000–1 185 000) experienced the death of primary caregivers, including at least one parent or custodial grandparent. 1 562 000 children (1 299 000–1 683 000) experienced the death of at least one primary or secondary caregiver. Countries in our study set with primary caregiver death rates of at least one per 1000 children included Peru (10·2 per 1000 children), South Africa (5·1), Mexico (3·5), Brazil (2·4), Colombia (2·3), Iran (1·7), the USA (1·5), Argentina (1·1), and Russia (1·0). Numbers of children orphaned exceeded numbers of deaths among those aged 15–50 years. Between two and five times more children had deceased fathers than deceased mothers. INTERPRETATION: Orphanhood and caregiver deaths are a hidden pandemic resulting from COVID-19-associated deaths. Accelerating equitable vaccine delivery is key to prevention. Psychosocial and economic support can help families to nurture children bereft of caregivers and help to ensure that institutionalisation is avoided. These data show the need for an additional pillar of our response: prevent, detect, respond, and care for children. FUNDING: UK Research and Innovation (Global Challenges Research Fund, Engineering and Physical Sciences Research Council, Medical Research Council), UK National Institute for Health Research, US National Institutes of Health, and Imperial College London

    Temperature and population density influence SARS-CoV-2 transmission in the absence of nonpharmaceutical interventions

    Get PDF
    As COVID-19 continues to spread across the world, it is increasingly important to understand the factors that influence its transmission. Seasonal variation driven by responses to changing environment has been shown to affect the transmission intensity of several coronaviruses. However, the impact of the environment on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remains largely unknown, and thus seasonal variation remains a source of uncertainty in forecasts of SARS-CoV-2 transmission. Here we address this issue by assessing the association of temperature, humidity, ultraviolet radiation, and population density with estimates of transmission rate (R). Using data from the United States, we explore correlates of transmission across US states using comparative regression and integrative epidemiological modeling. We find that policy intervention (“lockdown”) and reductions in individuals’ mobility are the major predictors of SARS-CoV-2 transmission rates, but, in their absence, lower temperatures and higher population densities are correlated with increased SARS-CoV-2 transmission. Our results show that summer weather cannot be considered a substitute for mitigation policies, but that lower autumn and winter temperatures may lead to an increase in transmission intensity in the absence of policy interventions or behavioral changes. We outline how this information may improve the forecasting of COVID-19, reveal its future seasonal dynamics, and inform intervention policies

    Comparing the responses of the UK, Sweden and Denmark to COVID-19 using counterfactual modelling

    Get PDF
    The UK and Sweden have among the worst per-capita COVID-19 mortality in Europe. Sweden stands out for its greater reliance on voluntary, rather than mandatory, control measures. We explore how the timing and effectiveness of control measures in the UK, Sweden and Denmark shaped COVID-19 mortality in each country, using a counterfactual assessment: what would the impact have been, had each country adopted the others’ policies? Using a Bayesian semi-mechanistic model without prior assumptions on the mechanism or effectiveness of interventions, we estimate the time-varying reproduction number for the UK, Sweden and Denmark from daily mortality data. We use two approaches to evaluate counterfactuals which transpose the transmission profile from one country onto another, in each country’s first wave from 13th March (when stringent interventions began) until 1st July 2020. UK mortality would have approximately doubled had Swedish policy been adopted, while Swedish mortality would have more than halved had Sweden adopted UK or Danish strategies. Danish policies were most effective, although differences between the UK and Denmark were significant for one counterfactual approach only. Our analysis shows that small changes in the timing or effectiveness of interventions have disproportionately large effects on total mortality within a rapidly growing epidemic

    CO<inf>2</inf> dissolution in a background hydrological flow

    No full text
    During CO2 sequestration into a deep saline aquifer of finite vertical extent, CO2 will tend to accumulate in structural highs such as offered by an anticline. Over times of tens to thousands of years, some of the CO2 will dissolve into the underlying groundwater to produce a region of relatively dense, saturated water directly below the plume of CO2. Continued dissolution then requires the supply of unsaturated aquifer water. In an aquifer of finite vertical extent, this may be provided by a background hydrological flow, or a laterally-spreading buoyancy-driven flow caused by the greater density of the CO2 saturated water relative to the original aquifer water. We investigate long time steady-state dissolution in the presence of a background hydrological flow. In steady state, the distribution of CO2 in the groundwater upstream of the aquifer involves a balance between three competing effects: (i) the buoyancy-driven flow of CO2 saturated water; (ii) the diffusion of CO2 from saturated to under-saturated water; and (iii) the advection associated with the oncoming background flow. This leads to three limiting regimes. In the limit of very slow diffusion, a nearly static intrusion of dense fluid may extend a finite distance upstream, balanced by the pressure gradient associated with the oncoming background flow. In the limit of fast diffusion relative to the flow, a gradient zone may become established in which the along-aquifer diffusive flux balances the advection associated with the background flow. However, if the buoyancy-driven flow speed exceeds the background hydrological flow speed, then a third, intermediate regime may become established. In this regime, a convective recirculation develops upstream of the anticline involving the vertical diffusion of CO2 from an upstream propagating flow of dense CO2 saturated water into the downstream propagating flow of CO2 unsaturated water. For each limiting case, we find analytical solutions for the distribution of CO2 upstream of the anticline, and test our analysis with full numerical simulations. A key result is that, although there may be very different controls on the distribution and extent of CO2 bearing water upstream of the anticline, in each case the dissolution rate is given by the product of the background volume flux and the difference in concentration between the CO2 saturated water and the original aquifer water upstream

    Analysis of the potential for a malaria vaccine to reduce gaps in malaria intervention coverage

    Get PDF
    Background The RTS,S/AS01 malaria vaccine is currently being piloted in three African countries. We sought to identify whether vaccination could reach additional children who are at risk from malaria but do not currently have access to, or use, core malaria interventions. Methods Using data from household surveys we calculated the overlap between malaria intervention coverage and childhood vaccination (diphtheria-tetanus-pertussis dose 3, DTP3) uptake in 20 African countries with at least one first administrative level unit with Plasmodium falciparum parasite prevalence greater than 10%. We used multilevel logistic regression to explore patterns of overlap by demographic and socioeconomic variables. We also estimated the public health impact of delivering RTS,S/AS01 to those children who do not use an insecticide-treated net (ITN) but who received the DTP3 vaccine. Results Uptake of DTP3 was higher than malaria intervention coverage in most countries. Overall, 34% of children did not use ITNs and received DTP3, while 35% of children used ITNs and received DTP3, although this breakdown varied by country. We estimated that there are 33 million children in these 20 countries who do not use an ITN. Of these, 23 million (70%) received the DTP3 vaccine. Vaccinating those 23 million children who receive DTP3 but do not use an ITN could avert an estimated 9.7 million clinical malaria cases each year. An additional 10.8 million cases could be averted by vaccinating those 24 million children who receive the vaccine and use an ITN. Children who had access to or used an ITN were 9 to 13% more likely to reside in rural areas compared to those who had neither intervention regardless of vaccination status. Mothers’ education status was a strong predictor of intervention uptake and was positively associated with use of ITNs and vaccination uptake and negatively associated with having access to an ITN but not using it. Wealth was also a strong predictor of intervention coverage. Conclusions Childhood vaccination to prevent malaria has the potential to reduce inequity in access to existing malaria interventions and could substantially reduce the childhood malaria burden in sub-Saharan Africa, even in regions with lower existing DTP3 coverage. Competing Interest Statement The authors have declared no competing interest
    corecore