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As COVID-19 continues to spread across the world, it is increas-
ingly important to understand the factors that influence its
transmission. Seasonal variation driven by responses to changing
environment has been shown to affect the transmission intensity
of several coronaviruses. However, the impact of the environment
on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-
2) remains largely unknown, and thus seasonal variation remains
a source of uncertainty in forecasts of SARS-CoV-2 transmission.
Here we address this issue by assessing the association of tem-
perature, humidity, ultraviolet radiation, and population density
with estimates of transmission rate (R). Using data from the
United States, we explore correlates of transmission across US
states using comparative regression and integrative epidemio-
logical modeling. We find that policy intervention (“lockdown”)
and reductions in individuals’ mobility are the major predictors
of SARS-CoV-2 transmission rates, but, in their absence, lower
temperatures and higher population densities are correlated with
increased SARS-CoV-2 transmission. Our results show that sum-
mer weather cannot be considered a substitute for mitigation
policies, but that lower autumn and winter temperatures may
lead to an increase in transmission intensity in the absence of
policy interventions or behavioral changes. We outline how this
information may improve the forecasting of COVID-19, reveal its
future seasonal dynamics, and inform intervention policies.
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In late 2019, a novel coronavirus originating in Wuhan City
(Hubei, China) (1) began to rapidly spread through the human

population. Since March 2020, this disease, COVID-19, has been
recognized as a global pandemic by the World Health Organi-
zation. The causative agent, severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2), is a close relative of the 2003
SARS coronavirus (1), although it appears to have several dif-
ferences, including a higher basic reproduction number (R0; the
average number of people infected by a carrier at the onset of
an epidemic) (2). Understanding the factors influencing SARS-
CoV-2 transmission is key for understanding the current patterns
of transmission and for refining predictions of the future spread
of SARS-CoV-2. Other coronaviruses display seasonal cycles of
transmission, and up to 30% of seasonal “colds” are caused
by coronaviruses (3). Thus, as many countries alter and relax
the nonpharmaceutical interventions initially imposed to control
COVID-19, there is a pressing need to understand whether envi-
ronmental factors will enhance or drive additional “waves” of
COVID-19 outbreaks as places move through seasonal climate
patterns (4).

SARS-CoV-2 is an enveloped RNA virus which is structurally
(if not phylogenetically) similar to other RNA viruses such as
influenza, Middle East respiratory syndrome, and HcoV-NL63
(5) that are known to display seasonal dynamics due to their

physical properties. For example, high temperatures and low
humidity can have a negative effect on influenza transmission by
reducing the efficiency of respiratory droplet transmission (6, 7).
Similar effects are seen in transmission of coronaviruses (8–10),
where high environmental temperatures break down viral lipid
layers to inactivate virus particles that are in the air or deposited
on surfaces (9, 11). However, assessing the role of environment
during a disease outbreak is challenging (12) because human fac-
tors such as population density, herd immunity, and behavior are
likely the main drivers of transmission (13–16). Moreover, the
nonpharmaceutical control measures and behavioral changes in
response to COVID-19 have been unprecedented in the mod-
ern era. These difficulties have hindered the quantification of
the impact of environment on SARS-CoV-2 transmission, mak-
ing it harder to generalize and synthesize observations across
regions with their differing climates. Despite these caveats, vari-
ous early studies have already reported effects of environmental
variables such as temperature, humidity, ultraviolet (UV) levels,
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and wind speed on the transmission of SARS-CoV-2 (16–24).
While, in general, most studies appear to support increased
transmission rates under cool, dry conditions (18), conflicting
results have been observed (21, 25), and, collectively, the envi-
ronmental signal appears to be weak (4). Much of the variability
in these early results is likely due to the use of inappropriate
response variables (such as cases or fatalities) which fail to cap-
ture the intrinsic variations in transmission intensity driven by
the effects of nonpharmaceutical intervention measures (4). Fur-
thermore, COVID-19 has taken hold in many places with diverse
climates, and there are obvious examples of high transmission
rates under warmer conditions, such as in Brazil (26), India (27),
and Iran (28).

Accurate assessment of the role environmental factors have
played so far in the spread of SARS-CoV-2 may provide insight
into the future seasonality of the disease. This is because seasonal
outbreaks of viruses are often driven by their responses to favor-
able (seasonal) changes in weather (29). Most epidemiological
forecasts make use of some variant of the Susceptible–Infected–
Recovered (SIR) framework and/or focus on the impacts of
government-level mitigation (e.g., refs. 30 and 31). Few epidemi-
ological models incorporate environmental impacts, and, when
they do, they assume COVID-19 responds in a manner identical
to related coronaviruses, because we lack data on SARS-CoV-
2’s environmental (and thus seasonal) responses (e.g., ref. 18).
This is despite theoretical demonstrations of the potential role
of environment in driving future seasonality of SARS-CoV-2
(22, 32) and the empirical evidence in structurally similar viruses
outlined above. Efforts to incorporate climate into COVID-19
forecasting have focused on regression-type models of cases and
fatalities (e.g., ref. 17), which are unreliable when diseases are
in the growth/expansion phase (33). Furthermore, such models
conflate environmental controls on occurrence with other drivers
such as public health interventions (e.g., the effects of lockdown
measures to contain the pandemic) (33), as both are changing
similarly through time. Such models are unlikely to yield use-
ful insights and may be misleading to policy makers (12). To
address this knowledge gap, there is a need for a true synthesis of
environmental modeling with well-established epidemiological
approaches.

Here we investigate the role of environment in the transmis-
sion of SARS-CoV-2 by incorporating environmental factors into
an existing epidemiological framework that has been applied
globally (34–36), and to the United States in particular (37).
The United States is a large country with great variation in
climate across which case and policy intervention data are com-
parable, permitting us to disentangle the role of environmental
drivers in SARS-CoV-2 transmission. We begin by exploring
associations between the environment (temperature, humidity,
UV radiation, and population density) and transmission intensity
independently estimated before and during stay-at-home orders
(henceforth termed “lockdown”). We used the basic reproduc-
tion number (R0) for our prelockdown transmission intensity
estimates, and the time-varying reproduction number (Rt , the
reproduction number, R, at a given time, t) averaged across
an appropriate time window for our during-lockdown estimates.
Our independent analysis of R0 focuses on a single snapshot
(the beginning) of the virus’s outbreak in each state, and reveals
whether differences in transmission across states are correlated
with differences in environment across space at that snapshot
in time. Critically, this independent analysis allows us to inves-
tigate the role of environment in the absence of any temporally
correlated changes in climate and transmission rate. After con-
firming a potential role for the environment, we verify and more
accurately quantify the relative roles of temperature and popula-
tion density by integrating them into an existing semimechanistic
epidemiological framework (37). While we find strong evidence
that temperature and population density are associated with

SARS-CoV-2 transmission, we emphasize that our findings also
reconfirm that the major drivers of transmission rates are pub-
lic policy and individual behavior. Through our use of existing,
robust sources of forecasts and models, our findings can be eas-
ily incorporated into workflows already used by policy makers, as
we detail here.

Results
When analyzed jointly, the R0 of all US states are fairly well
predicted by all explanatory variables included in the regression
model (i.e. population density, temperature, absolute humid-
ity, and UV radiation), with an overall model r2 of 60% (SI
Appendix, Table S1). However, UV radiation is a very weak pre-
dictor of R0, while temperature and absolute humidity show
sufficiently strong correlations with each other (r =0.85) that we
cannot disentangle their contributions to R0 due to high inflation
of variances (SI Appendix, Table S1). This is further demon-
strated through principal components analysis, where tempera-
ture and absolute humidity strongly load onto the same principal
component axis (SI Appendix, Fig. S1). We therefore focused
on temperature as the best-fitting climate variable (assessed by
Pearson’s r ; SI Appendix, Table S2).

We regressed prelockdown R0 and during-lockdown Rt

(defined as the mean Rt recorded over the 14-d period following
a stay-at-home order) estimates against temperature and log10-
transformed population density, with lockdown as a binary inter-
action term. This model explicitly tests for not just the effect of
temperature, population density, and lockdown on transmission
but also whether the relationship between R0 and temperature
or population density differs under lockdown.

We find that, in the absence of lockdown, R0 significantly
increases with population density and decreases with temper-
ature (Fig. 1A; both p< 0.001; Table 1). However, lockdown
significantly decreases R overall (Table 1 and Fig. 1B), and,
moreover, there is a significant interaction between lockdown
and temperature (p< 0.001; Table 1), as, under the effects
of lockdown, the temperature coefficient is essentially reduced
to zero; that is, lockdown mitigates the effects of climate on
transmission.

The strong correlates of population density and temperature
on R0 across the United States were echoed in our climate-
driven Bayesian modeling of daily variation in Rt . Posterior
medians of the scaled coefficients of (log10-transformed) pop-
ulation density and daily temperature were 0.68 and −0.48,
respectively. These coefficients were strongly supported (both
Bayesian probabilities of > 99.9%), and suggest that greater pop-
ulation density is approximately 1.4 times greater a driver of
higher transmission than colder temperature (0.68/0.48≈ 1.4).
Changes in mobility (such as those induced by stay-at-home
measures) have the potential to mitigate these impacts of both
population density and temperature (Fig. 2). Our model sug-
gests that even quite large variation in underlying transmission
driven by variation either in temperature through time or in
population density across space can be mitigated by reductions
in mobility (see also SI Appendix, Fig. S6). Critically, however,
the posterior distributions are skewed, particularly for pop-
ulation density: High population density may be difficult to
mitigate except through large mobility reductions (as shown by
the credibility intervals in Fig. 2). We emphasize that other
transmission mitigation decisions, such as hand washing, mask
wearing, and physical distancing, were not assessed in our model.
We highlight that the posterior estimates of environment and
average mobility were correlated (Pearson’s r =0.30 for temper-
ature and r =−0.32 for population density). This likely results
from correlated changes in mobility and temperature through
time, and makes the estimated mobility reductions in Fig. 2
conservative (i.e., we potentially report larger mobility reduc-
tions than would be necessary to mitigate environmental effects).
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Fig. 1. R0 is affected by the environment, but the impact of lockdown is greater. (A) R0 plotted against temperature (averaged across the 2 wk prior to the
R0 estimate) and log10-transformed population density (people per km2) for each US state (gray points). Surface shows the predicted R0 from the regression
model (Table 1). Temperature has a negative effect on R0 at state level in the United States, while population density has a positive effect (Table 1). (B) The
mean Rt for the 2 wk following a statewide stay-at-home mandate (i.e., during lockdown) plotted against average daily temperature for the same period
and log10-transformed population density. The effects of temperature and population density are much weaker in the mobility-restricted data, and R is
reduced overall. The same color scale, given in the center of the figure, is used across both subplots. A two-dimensional (2D) representation of these results
is shown in SI Appendix, Fig. S2.

In SI Appendix, we present a null model fit to data where temper-
ature is constrained to be constant across time in all states. This
null model neither fits the death data as accurately nor detects
such strong impacts of temperature, suggesting that our results
are not driven solely by static temperature differences across
states (which may be a potential conclusion from our indepen-
dent R0 validation). Furthermore, we also present forecasting
in SI Appendix, where we show that our model provides a good
prediction of observed deaths for the 14 d following the data to
which the model was fit.

Discussion
Here, by combining epidemiological models and outputs with
spatial climate data, we show that environment (specifically, cold,
but also the correlated low-humidity conditions) can enhance
SARS-CoV-2 transmission across the United States. Critically,
however, these environmental impacts are weaker than that of
population density, which is, itself, a weaker driver than pol-
icy intervention (i.e., lockdown). These results are broadly in
agreement with earlier work investigating drivers of transmis-
sion in local epidemics across the United States (16). Afshordi
et al. (16) found that climate (humidity, but also the highly cor-
related temperature) could have an impact on transmission, but
that this effect was secondary to the effect of population den-
sity, which itself had a lesser effect than mobility (as a measure
of nonpharmaceutical intervention strength). Our work extends
this, showing that similar effects are also observed across broader
spatial scales. Furthermore, our incorporation of an interaction
gives the explicit finding of a minimization of the impact of envi-
ronment as a driver of transmission in the presence of lockdown.
Below, we suggest that the accuracy of forecasts of SARS-CoV-
2 transmission, in particular across seasons, could be improved
by incorporating temperature, as well as population density, in a
robust, reproducible manner as we have done here.

The Role That Environment Plays in Transmission. Across these
state-level US data, we found a significant negative effect of tem-
perature on SARS-CoV-2’s R0 and a significant positive effect
of population density. An important caveat to this, however, is
the collinearity between temperature, absolute humidity, and,
to a lesser degree, UV levels. The strong correlations between
these environmental drivers mean that we are unable to discern
the effects of each in a single model, and, therefore, we focus
on temperature as the most reliable environmental predictor.
After accounting for the effect of population density on trans-
mission (Table 1), temperature’s effect is striking (Fig. 3), and

we speculate that some of the controversy surrounding the role
environment plays in transmission may partially result from stud-
ies addressing temperature or humidity without simultaneously
considering other factors such as population density. We also
tested the effects of our predictor variables on Rt for times where
strict lockdown measures were in place. When these mobility
restrictions are in place, we observe no significant effects of tem-
perature on Rt ; that is, the effects of lockdown dampen any
environmental effects so as to make them inconsequential (Fig.
1B and SI Appendix, Table S3). Furthermore, under lockdown
conditions, the overall transmission rates are vastly reduced.
Through our epidemiological modeling approach, we are able to
account for these effects (as mobility changes are explicitly incor-
porated), and find that higher population densities and lower
temperatures drive increased Rt . Moreover, the formulation of
our epidemiological model ensures that, under high mobility
reductions, changes in environment have little effect on Rt , mir-
roring our regression findings (see Materials and Methods and
SI Appendix, Fig. S6).

The precise physiological mechanisms for temperature-
dependent inactivation in SARS-CoV-2 are still not known, but
animal models for influenza have shown that increased viral
transmission at lower temperatures can be due to effects on the

Table 1. Population (Pop) density and temperature are drivers of
R0 at state level in the United States, but the effect of lockdown
is greater

Coefficient SE t value p value

(Intercept) 2.41 0.050 48.4 < 0.001*
Temperature −0.30 0.048 −6.13 < 0.001*
Pop density 0.19 0.045 4.20 < 0.001*
Lockdown −1.29 0.072 −17.8 < 0.001*
Temperature contrast 0.30 0.075 3.92 < 0.001*
Pop density contrast −0.07 0.064 −1.09 0.28

Here, r2 = 89%, F5,74 = 123, and p< 0.001. Coefficient estimates are
when predictors are scaled to have mean = 0 and SD = 1. Scaling our
explanatory variables means our coefficients are measures of the relative
importance of each variable. Contrasts are changes to coefficients when
lockdown is in place; that is, a positive temperature contrast means that the
temperature coefficient increases by that value under lockdown conditions.
Here, temperature is a greater driver of R0 than population density (log10-
transformed), but only in the absence of nonpharmaceutical interventions
(lockdown).
*Here, p< 0.05.
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Fig. 2. Average mobility reductions required to mitigate differences in temperature and population density. This figure shows the percent reduction in
average mobility (measuring retail, recreation, grocery, pharmacy, and workplace trips) needed to compensate for (A) a given temperature- or (B) population
density-driven increase in Rt . These calculations assume a “background” R0 of one and a baseline “background” mobility [defined as “0” by Google (38)].
Solid lines represent the median mobility reduction required; dark gray and light gray envelopes represent the 75% and 90% posterior credibility intervals,
respectively.

host (6, 7). In animal models, this is proposed to be due to the
combined effects of higher titers of viral particle shedding and
greater viral stability in nasal passages of those housed in cooler
conditions (7). In addition to host effects, the persistence time of
the virus outside of the body is expected to be negatively affected
by higher environmental temperatures, which cause viral inacti-
vation via breakdown of their lipid layers (9, 11). Indeed, recent
evidence suggests that SARS-CoV-2 survives for substantially
longer on inert surfaces in colder conditions (39). However, both
the direct host effects and the potential effects of environment
on viral stability are likely moderated (if not mitigated) by indoor
heating (40), although the same may not always be true of humid-
ity. Most transmission is thought to have occurred indoors (41),
increasing the potential for this mitigation factor. However, this
indoor transmission study was specific to China and thus may
or may not accurately represent transmission dynamics in the
United States. Note also that indoor temperatures do tend to
follow seasonal patterns, albeit with a lower degree of variation
than outdoor temperatures (42–44). Contact rate is related to
population density (15), and so it is unsurprising that population
density was a significant factor in our analysis (Fig. 1A). We stress
that temperature was not a driver of transmission under lock-
down, and the effects of population density were lessened (Fig.
1B): Climate effects matter little when contact rates are severely
diminished through policy interventions (45).

There are important methodological caveats to our findings.
Dynamics and reporting between US states are known to be
variable (46), introducing a level of uncertainty to our find-
ings. Furthermore, lockdown measures were (and continue to
be) quite heterogeneous across the United States, with different
states displaying different levels of response to COVID-19 (47).
Through our epidemiological modeling approach, we are able
to account for these different state-level responses using Google
mobility data. We can also observe other potential confounding
factors in these analyses. Across the United States, the northeast-
ern states in the vicinity of the major transport hub of New York
City (e.g., New York, New Jersey, Maine, Pennsylvania, Rhode
Island, and Connecticut) tend to have generally higher R0 than
predicted, while West Coast states (e.g., Washington, California,
and Oregon) have lower R0 than predicted (Fig. 3A). While this
type of effect could be due to preemptive protective measures
taken by states prior to COVID-19 outbreaks, we likely mitigated
this by removing states that initiated nonpharmaceutical inter-
ventions before our first time step (see Materials and Methods).
Indeed, we find no evidence of states with later COVID-19 out-

breaks having lower transmission rates, showing that preemptive
protective measures are unlikely to have influenced our results in
any meaningful way (SI Appendix, Fig. S4). A further confound-
ing factor may be seen if temperature affects human behavior,
thus making it difficult to disentangle the effects of climate from
changes to mobility. We do find a link between the average
mobility and temperature coefficients in our Bayesian modeling,
suggesting a degree of colinearity; however (perhaps surpris-
ingly), we see no direct correlations between daily temperature
and recreational mobility trends for parks (see SI Appendix).
Again, this highlights the importance of human behavior as
a confounding factor in analyses of environmental drivers on
SARS-CoV-2 transmission. In the Results, we present data where
population density is averaged across each state, which may not
accurately capture any finer-scale transmission dynamics occur-
ring within metropolitan areas. In SI Appendix, we explore the
use of alternative metrics to capture transmission in urban pop-
ulations (total population, percent population living in urban
areas, and total population living in urban areas; SI Appendix,
Table S7) but find nothing that correlates more strongly with R0

than population density. Equally, our semimechanistic models
do not explicitly measure population immigrations as a driver of
transmission rates, although we could find no effect of inbound
flight numbers on transmission in comparative analysis (see SI
Appendix, Fig. S3). Nevertheless, work at smaller geographical
scales (local epidemics within US counties and metropolitan
areas) has produced qualitatively similar results, of climate- and
population density-driven transmission, secondary to the effects
of nonpharmaceutical interventions (16). We suggest that fur-
ther work should be conducted at these finer spatial scales
to more fully address these potential drivers of transmission
intensity.

Policy Relevance of Our Findings. Our results comparing SARS-
CoV-2 transmission rate before and during lockdown support the
idea that the major driver of transmission is public health policy
(34, 48, 49) (Fig. 1). Once stay-at-home measures were imple-
mented across the United States, we can find no meaningful
signal of temperature on transmission. This provides two impor-
tant, and timely, insights for policy makers: Summer weather is
no substitute for mitigation, and policy can prevent transmission
in the winter. At the coarse scale of US states, population den-
sity is a greater driver of transmission intensity than temperature
in our epidemiological modeling (log10 [population density] is
∼1.4× larger scaled coefficient than temperature). It should be
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SFig. 3. The relative importance of temperature and population density as drivers of prelockdown R0. (A) Heatmap of the regression model R0 predictions,

with US state-level R0 point estimates overlaid. High population densities and low temperatures drive increases in SARS-CoV-2 R0. This is a 2D representation
of the regression plane in Fig. 1A, using the same color scale. (B) Residuals from a linear regression of R0 against log10-transformed population density
(“Corrected R0”), plotted against temperature. This illustrates that, when considering population density alone, R0 is overestimated in cold states and
underestimated in warm states. After accounting for population density, there is a significant effect of temperature upon R0 (Table 1). In both plots, points
are highlighted with standard two-letter state codes; MN and FL refer to Minnesota and Florida, respectively, and are referred to in Discussion.

considered whether thresholds for adaptive and/or intermittent
lockdown might be more precautionary (i.e., lower) in colder,
more densely populated regions. However, we strongly suggest
that this should neither be in order to allow other regions to
actively relax restrictions nor conducted without further exami-
nation of finer-scale disease dynamics. When making decisions
about the relative importance of climate and population den-
sity, it is important to account for the magnitude of variation in
the two variables. Temperature varies widely across the United
States, and that differences in transmission rates between states
(contrast, for example, Minnesota and Florida in Fig. 3) may
vary due to climate does not imply that more-modest climate dif-
ferences within a state drive differences through time or across
space. Regardless, our analysis is too spatially coarse to address
such variation. Even quite large variations in climate are more
straightforward to mitigate than population density differences
(Fig. 2), and so we suggest that regions with higher popula-
tion density should continue to be monitored carefully. Finally,
we emphasize that population density and temperature are well
known to be strongly correlated across US states (see also Fig.
3); this does not affect our model fitting of coefficient esti-
mates, but it does affect their interpretation. A more densely
populated state is also likely to be warmer, and so we sug-
gest that both factors (and others, such as mobility) should be
taken into account when trying to a priori estimate a region’s
transmission rate.

These results have strong implications for modelers consider-
ing the potential impacts of seasonality on the virus. Such work
has already considered the role that seasonality might play, by
assuming responses of structurally similar and/or related diseases
are adequate proxies for SARS-CoV-2 (18). These assumptions
are broadly correct, but here we parameterize and quantify the
magnitude of this effect for SARS-CoV-2. Our findings suggest
that previously unexplained variation among regions’ transmis-
sion, such as in our independently estimated R0 data, can be
accounted for by environmental factors. Further, our results sup-
port a role for daily temperature changes in transmission, but,
we emphasize, do not conflict with other studies suggesting that

seasonal forecasting plays a secondary role to mitigation and/or
number of susceptible individuals. Such studies (18) assumed
SARS-CoV-2 responds to climate to extents broadly similar to
those we find here. We used the United States as a case study
rather than performing a global analysis, as there are a multi-
tude of confounding factors that may influence viral transmission
rates between countries, such as wide variation in contact matrix
structures (50). We are not suggesting that warmer countries
cannot have high COVID-19 transmission rates; many already
do. What our results do suggest, however, is that future fore-
casting work should consider the use of the environment to
enhance predictions of disease spread. In countries such as
the United States with continental climates that swing between
extremes of heat and cold, we suggest policy makers should
assume that transmission will increase in winter (and, poten-
tially, autumn/fall). The timing of the seasons are broadly pre-
dictable, so this is an area in which policy could be proactive, not
reactive.

Conclusion. There is no single cause of, or solution to, the cur-
rent COVID-19 pandemic, and all drivers must be placed in
perspective. Here we suggest that both environment (includ-
ing population density) and daily weather may play a role in
the transmission of SARS-CoV-2. However, the major driver
of transmission, and our best method of controlling it, is pub-
lic policy, as this and many other studies have shown (48,
49). Indeed, we have shown that, when stringent public pol-
icy measures are in place, the transmission effects of environ-
mental drivers are negligible. Therefore, while SARS-CoV-2
may show seasonal and spatial variation in its transmission
rates, these effects can be mitigated through public health
interventions.

Materials and Methods
We explored the association between environmental covariates and SARS-
CoV-2 transmission intensity using two approaches. First, we took existing
state-level estimates of R0 and during-lockdown Rt for the United States
(37), and regressed them against environmental data in order to test
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for potential prelockdown and during-lockdown patterns. In the second
approach, we modified and fitted the existing semimechanistic epidemi-
ological model used to generate the R0 and Rt estimates above, and
fitted it to the observed death time series while explicitly incorporating
the effects of the most important aspects of environment (temperature
and population density) on the virus. This second model makes use of
daily weather observations and provides a rigorous framework to quan-
tify the drivers of SARS-CoV-2 transmission across the United States. The
first approach mitigates potential biases arising from the autocorrelation
of the initiation of lockdown and the cessation of winter in the United
States in the second approach, since our independent regression focuses
on initial transmission (i.e., R0). Below, all software packages given in ital-
ics are R packages (version 3.6.3) (51) unless otherwise specified. Code to
reproduce our analyses, download source data, and update models with
new data as it becomes available is given at our team’s GitHub repository
(https://www.github.com/pearselab/tyrell).

Environmental Data Collection. We collated global population density data
from the Gridded Population of the World collection (52), and hourly tem-
perature (T), relative humidity (RH), and surface UV radiation (in joules
per square meter) estimates for 2020 from the Copernicus Climate Change
Service (53). All of the above data were at the same spatial resolution of
0.25× 0.25◦. The amount of water vapor air can hold increases with temper-
ature, and since, in other viruses, the absolute humidity (AH) of air can drive
transmission more than relative saturation (40, 54), we calculated absolute
humidity from our data using the the Clausius–Clapeyron relation and the
ideal gas law (22, 54),

AH = 1,000 ·
e0 · e

L
Rv

(
1

T0
− 1

T

)
· RH

Rv · T
, [1]

where AH (grams per cubic meter) is the absolute humidity, T (kelvin) is
the temperature in a given cell, RH is the relative humidity in a given cell
(expressed as a percentage), e0 is the saturation vapor pressure (6.11 mb) at
reference temperature T0 (which we set as 273.15 K), L is the latent heat of
evaporation for water (2,257 kJ·kg−1), and Rv is the gas constant for water
vapor (461.53 J·kg−1·K−1).

We used the Climate Data Operators program (55) to compute daily
means for each of our climate variables. Finally, we averaged the value of
each covariate (median) across the state-level administrative units given by
shapefiles from the global administrative areas database (56) (the 50 US
states, plus Washington, DC).

Independent Validation of the Impact of Environment on R0. To validate the
impact of the environment on R0, we used an existing dataset of SARS-CoV-
2 transmission rate estimates for each of the states of the United States (37).
We used the basic reproduction estimates (R0, before the implementation
of any nonpharmaceutical interventions) as a fundamental measure of virus
transmissibility in each state.

In these data, R0 is estimated as Rt=0, where t = 0 occurs 30 d prior to
the first 10 cumulative deaths recorded for each state (34, 37). The date
upon which R0 is estimated therefore differs between states. To account for
these temporal differences, we took the means of our daily climate variables
across the 14 d prior to t = 0 for each state as an approximation for the con-
ditions under which each population first experienced COVID-19. To test the
impact of the environment on R0, we performed multiple linear regression
on R0 with temperature, absolute humidity, UV radiation, and population
density as predictors. To compare environmental effects on the reproduc-
tion number under mobility restriction measures (i.e., lockdown), we took
the average (mean) Rt across the 14 d following a state-wide stay-at-home
mandate and regressed these against the environmental predictors aver-
aged across the same time period. We used 14 d again here for consistency
with our environmental comparison to R0. Although mobility restrictions
may differ in magnitude between states, these effects are incorporated into
the estimates for the Rt parameter. In seven states (Arkansas, Iowa, North
Dakota, Nebraska, Oklahoma, South Dakota, and Wyoming), no state-wide
stay-at-home mandate was declared. In a further four states (Alaska, Hawaii,
Montana, and Utah), t = 0 occurred after nonpharmaceutical interventions
had already been instated. These 11 states were therefore excluded from
the independent validation analyses.

Integrative Modeling of the Impact of Environment on SARS-CoV-2 Transmis-
sion. To further assess the potential impact of environment on SARS-CoV-2
transmission, we modified the semimechanistic Bayesian model (37) that

generated the Rt estimates used above to incorporate both population den-
sity and daily temperature (the best-fitting climate variable; see Results).
Full details of the model are given in Unwin et al. (37) and are replicated in
SI Appendix, Bayesian Model). Below, we briefly outline the model’s struc-
ture and then emphasize the changes we have made. Unwin et al. (37) fit
their model to daily deaths across the United States in each state, using the
working assumption that death data are more complete than case incidence
data. Each biogeographic region has its own infection–fatality ratio (IFR)
estimate based on previously estimated IFRs from China (57) that have been
scaled to reflect the population demographics of each state, and contact
patterns of the United Kingdom (the behavior assumed closest to the United
States from the available data). These estimates form the mean value of the
IFR in the model, with normally distributed estimated variation. The time
from infection until death is also modeled using data from previous empir-
ical studies as a mixed distribution [Γ(5.1, 0.86) + Γ(17.8, 0.45)] in order to
account for uncertainty in the time from infection to symptom onset and
the time from symptom onset to death. We changed the estimation of
transmission across states from (37) as follows:

Rt,m = (µ+ ct,mC + pmP) · 2InvLogit(

−
∑

(Xt,m,kαk)−Xt,m,1α
region
r(m) −Xt,m,2α

state
m − ε),

[2]

where µ captures overall transmission common to all states, C is the coeffi-
cient for temperature (ct,m; in degrees Celsius) at time (t) in state m, and P is
the coefficient for population density (pm) of state m (log10-transformed
people per km2). We standardized ct,m and pm to have a mean of zero
and standard deviation of one, in order to make their absolute magni-
tudes measures of the relative importance of each term and thus facilitate
their comparison. We placed strong, conservative priors on these new model
terms, specifically,

ct,m, pm∼Normal(0, 0.5) [3]

µ∼Normal(3.28, 0.5). [4]

For µ, this is the same as the prior used in the original (nonclimate)
model (37) (but see our caveat below about this term). The other terms
are unchanged from their original definitions given in ref. 37, and we
briefly describe them below. InvLogit is the inverse logit transformation
applied to a series of hierarchically nested terms (αk, αregion

r(m) , and αstate
m )

multiplied by Google mobility data (38) (Xt,m,k) with a weekly AR(2) auto-
correlated error term for each state (ε; see ref. 37 and SI Appendix for
more details). Xt,m,k are three US-wide measures of the impact of changing
mobility across states on “average” across retail and recreation, grocery and
pharmacy, and workplace trips (Xt,m,1), in “residential” areas (Xt,m,2), and
using public “transit” (Xt,m,3). These mobility data show changes in indi-
viduals’ behavior following government interventions and thus represent
a daily proxy for lockdown intensity (and concomitant impacts on contact
rates). We focus on the vector αk, whose three entries assess the impact of
mobility comparably across the country (and thus are each analogous to c
and p). The terms αregion

r(m) and αstate
m address differences in average mobility

across eight broad geographic regions (the Great Lakes, Great Plains, Rocky
Mountains, Northeast Corridor, Pacific Northwest, South Atlantic, South-
ern Appalachia, and the South; indexed by r(m)) and for transit across
individual states (m), respectively. While we attempted to address compa-
rable hierarchically nested temperature responses in this model, we felt the
correlation between changes in Xt,m,k and ct,m was inducing fitting prob-
lems and so opted for a model simpler (and so more conservative) in its
novel components. In this model formulation, temperature and population
density essentially contribute to a latent transmission rate, which is then
mediated by the mobility terms to produce the realized Rt . Although an
interaction between mobility and environment (as found in our regres-
sion modeling; see Results) is not explicitly modeled, this formulation
produces results analogous that finding; that is, when mobility reductions
are high (“lockdown”), environment has little effect on the realized Rt

(see SI Appendix, Fig. S6).
We emphasize that the model presented here differs from the original

model by fitting a common µ across all states, instead of allowing each state
to have a different baseline µ that was hierarchically drawn from a common
parameter (itself termed µ in ref. 37). This difference ensures identifiabil-
ity of our model parameters, since the (latent, and hierarchically pooled)
state-wise means are strongly driven by both population density and envi-
ronment that are now included in the model (see Results). Our model, which
was directly adapted from the code in ref. 37, was fit using rstan (58) with
five independent chains (each with 3,000 total iterations and a warm-up of
1,000). Full model coefficients and outputs are given in SI Appendix, Table
S6; posterior predictive checks were performed to ensure that the predicted
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Rt values for each state through time were realistic and sensible and that all
chains had mixed and converged.

We performed additional analyses to cross-validate our model findings.
First, we used fitted coefficients with known temperature and mobility data
to forecast deaths into the 14 d immediately following the date range that
the model was fitted to. We also compared the predicted deaths to the
observed deaths over the same time period to validate the accuracy of our
model. These predictions were conducted using a separate cross-validation
run of our model (five chains of 1,500 iterations with a warm-up of 1,000).
Secondly, we validated the inclusion of daily temperature change in our
model by comparing the fit to that of a null model where temperature
remains constant through time. In this null model, we replaced all daily
temperature within a state with that state’s median temperature across the
study period, and fit the model as described above. Thus this null model
tests whether it is the average temperature of a state, rather than daily
temperature, that drives changes in transmission through time. We tested

this by asking whether the effect of temperature is as strong as in our origi-
nal model (i.e., the magnitude of the temperature coefficient, C); if not, this
validates our inclusion of daily temperature change in our model.

Data Availability. No new data are released as part of this paper, all
external datasets used are publicly available, described in Materials and
Methods and referenced. Outputs from our Bayesian model runs are
available on Figshare (https://doi.org/10.6084/m9.figshare.14696841.v1) and
code to reproduce our analyses are available on Zenodo (https://doi.org/
10.5281/zenodo.4884696). Code to download and combine external
datasets and reproduce our full analysis pipeline is also available in our
team’s GitHub repository (https://www.github.com/pearselab/tyrell).
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