273 research outputs found

    Dopamine-D1 and δ-opioid receptors co-exist in rat striatal neurons

    Get PDF
    Cocaine’s enhancement of dopaminergic neurotransmission in the mesolimbic pathway plays a critical role in the initial reinforcing properties of this drug. However, other neurotransmitter systems are also integral to the addiction process. A large body of data indicates that opioids and dopamine together mediate emotional and reinforced behaviors. In support of this, cocaine-mediated increases in activation of dopamine D1 receptors (D1R) results in a desensitization of δ-opioid receptor (DOR) signaling through adenylyl cyclase (AC) in striatal neurons. To further define cellular mechanisms underlying this effect, the subcellular distribution of DOR and D1R was examined in the rat dorsolateral striatum. Dual immunoperoxidase/gold-silver detection combined with electron microscopy was used to identify DOR and D1R immunoreactivities in the same section of tissue. Semi-quantitative analysis revealed that a subset of dendritic cellular profiles exhibited both DOR and D1R immunoreactivities. Of 165 randomly sampled D1R immunoreactive profiles, 43% contained DOR. Similarly of 198 DOR-labeled cellular profiles, 52% contained D1R. The present data provide ultrastructural evidence for co-existence between DOR and D1R in striatal neurons, suggesting a possible mechanism whereby D1R modulation may alter DOR function

    Trk: a neuromodulator of age-specific behavioral and neurochemical responses to cocaine in mice.

    Get PDF
    Responses to psychostimulants vary with age, but the molecular etiologies of these differences are largely unknown. The goal of the present research was to identify age-specific behavioral and molecular adaptations to cocaine and to elucidate the mechanisms involved therein. Postweanling, periadolescent, and adult male CD-1 mice were exposed to cocaine (20 mg/kg) for 7 d. The rewarding effects of cocaine were assessed, as were the response to a Trk antagonist and the regulation of dopamine and cAMP-regulated phosphoprotein, 32 kDa (DARPP-32). Cocaine was rewarding in both periadolescent and adult mice using a conditioned place preference procedure. In contrast, postweanling mice failed to demonstrate significant cocaine-induced place preference. Because components of the neurotrophin system including brain-derived neurotrophic factor and TrkB are developmentally regulated, their role in the age-specific effects of cocaine was determined using the Trk receptor antagonist K252a. Postweanling mice that received K252a before daily cocaine showed a significant place preference to the cocaine-paired environment that was not seen in the absence of K252a. DARPP-32 protein levels were significantly upregulated in the lateral region of the caudate-putamen exclusively in postweanling mice after chronic cocaine. Daily pretreatment with K252a attenuated the induction of DARPP-32 in the postweanling striatum. These data indicate that Trk neurotransmission plays a role in age-specific behavioral and molecular responses to cocaine and concurrently modulates DARPP-32 levels

    Effect of H on Si molecular‐beam epitaxy

    Full text link
    In Si crystal growth by molecular‐beam epitaxy (MBE) at low temperatures there is known to be an epitaxial thickness: an initially crystalline regime before the deposited film becomes amorphous. The predominant impurity in MBE is hydrogen, but the role of background H in low‐temperature MBE has not previously been assessed. Here the effect of deliberate dosing of the Si surface with atomic H during low‐T growth is studied. The epitaxial thickness is shown to be sensitive to very small additional H fluxes (≊10−9 Torr, i.e., an increase in H only marginally above ambient). With further increases in dose rate, the epitaxial thickness decreases as hepi=h0−k(ln PH). Using secondary‐ion‐mass spectrometry data on the segregated H at the interface, we argue that breakdown in epitaxy is not caused directly by the surface concentration of adsorbed impurities. It is deduced that very small concentrations of H may influence the Si surface diffusion rate. The possible effect of background H adsorption on previous experiments on Si steps and surface diffusion is discussed.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/69704/2/JAPIAU-74-11-6615-1.pd

    Essential requirement for JPT2 in NAADP-evoked Ca²⁺ signaling

    Get PDF
    Nicotinic acid adenine dinucleotide phosphate (NAADP) is a second messenger that releases Ca2+ from acidic organelles through the activation of two-pore channels (TPCs) to regulate endolysosomal trafficking events. NAADP action is mediated by NAADP-binding protein(s) of unknown identity that confer NAADP sensitivity to TPCs. Here, we used a “clickable” NAADP-based photoprobe to isolate human NAADP-binding proteins and identified Jupiter microtubule-associated homolog 2 (JPT2) as a TPC accessory protein required for endogenous NAADP-evoked Ca2+ signaling. JPT2 was also required for the translocation of a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pseudovirus through the endolysosomal system. Thus, JPT2 is a component of the NAADP receptor complex that is essential for TPC-dependent Ca2+ signaling and control of coronaviral entry

    Mechanisms of activation of nucleus accumbens neurons by cocaine via sigma-1 receptor-inositol 1,4,5-trisphosphate-transient receptor potential canonical channel pathways.

    Get PDF
    Cocaine promotes addictive behavior primarily by blocking the dopamine transporter, thus increasing dopamine transmission in the nucleus accumbens (nAcc); however, additional mechanisms are continually emerging. Sigma-1 receptors (σ1Rs) are known targets for cocaine, yet the mechanisms underlying σ1R-mediated effects of cocaine are incompletely understood. The present study examined direct effects of cocaine on dissociated nAcc neurons expressing phosphatidylinositol-linked D1 receptors. Endoplasmic reticulum-located σ1Rs and inositol 1,4,5-trisphosphate (IP3) receptors (IP3Rs) were targeted using intracellular microinjection. IP3 microinjection robustly elevated intracellular Ca(2+) concentration, [Ca(2+)]i. While cocaine alone was devoid of an effect, the IP3-induced response was σ1R-dependently enhanced by cocaine co-injection. Likewise, cocaine augmented the [Ca(2+)]i increase elicited by extracellularly applying an IP3-generating molecule (ATP), via σ1Rs. The cocaine-induced enhancement of the IP3/ATP-mediated Ca(2+) elevation occurred at pharmacologically relevant concentrations and was mediated by transient receptor potential canonical channels (TRPC). IP3 microinjection elicited a slight, transient depolarization, further converted to a greatly enhanced, prolonged response, by cocaine co-injection. The cocaine-triggered augmentation was σ1R-dependent, TRPC-mediated and contingent on [Ca(2+)]i elevation. ATP-induced depolarization was similarly enhanced by cocaine. Thus, we identify a novel mechanism by which cocaine promotes activation of D1-expressing nAcc neurons: enhancement of IP3R-mediated responses via σ1R activation at the endoplasmic reticulum, resulting in augmented Ca(2+) release and amplified depolarization due to subsequent stimulation of TRPC. In vivo, intra-accumbal blockade of σ1R or TRPC significantly diminished cocaine-induced hyperlocomotion and locomotor sensitization, endorsing a physio-pathological significance of the pathway identified in vitro

    Retention of Supraspinal Delta-like Analgesia and Loss of Morphine Tolerance in δ Opioid Receptor Knockout Mice

    Get PDF
    AbstractGene targeting was used to delete exon 2 of mouse DOR-1, which encodes the δ opioid receptor. Essentially all 3H-[D-Pen2,D-Pen5]enkephalin (3H-DPDPE) and 3H-[D-Ala2,D-Glu4]deltorphin (3H-deltorphin-2) binding is absent from mutant mice, demonstrating that DOR-1 encodes both δ1 and δ2 receptor subtypes. Homozygous mutant mice display markedly reduced spinal δ analgesia, but peptide δ agonists retain supraspinal analgesic potency that is only partially antagonized by naltrindole. Retained DPDPE analgesia is also demonstrated upon formalin testing, while the nonpeptide δ agonist BW373U69 exhibits enhanced activity in DOR-1 mutant mice. Together, these findings suggest the existence of a second delta-like analgesic system. FinallyDOR-1 mutant mice do not develop analgesic tolerance to morphine, genetically demonstrating a central role for DOR-1 in this process

    Contribution of limbic norepinephrine to cannabinoid-induced aversion

    Get PDF
    RATIONALE: The cannabinoid system has risen to the forefront in the development of novel treatments for a number of pathophysiological processes. However, significant side effects have been observed in clinical trials raising concerns regarding the potential clinical utility of cannabinoid-based agents. Understanding the neural circuits and neurochemical substrates impacted by cannabinoids will provide a better means of gaging their actions within the central nervous system that may contribute to the expression of unwanted side effects. OBJECTIVES: In the present study, we investigated whether norepinephrine (NE) in the limbic forebrain is a critical determinant of cannabinoid receptor agonist-induced aversion and anxiety in rats. METHODS: An immunotoxin lesion approach was combined with behavioral analysis using a place conditioning paradigm and the elevated zero maze. RESULTS: Our results show that the non-selective CB1/CB2 receptor agonist, WIN 55,212-2, produced a significant place aversion in rats. Further, NE in the nucleus accumbens was critical for WIN 55,212-2-induced aversion but did not affect anxiety-like behaviors. Depletion of NE from the bed nucleus of the stria terminalis was ineffective in altering WIN 55,212-2-induced aversion and anxiety. CONCLUSIONS: These results indicate that limbic, specifically accumbal, NE is required for cannabinoid-induced aversion but is not essential to cannabinoid-induced anxiety.This works was supported by PHS grant DA 020129. Ana Franky Carvalho was supported by the Portuguese Foundation for Science and Technology (SFRH/BD/33236/2007)
    • …
    corecore