14 research outputs found
Au ( Bu P): A Highly Symmetric Metalloid Gold Cluster in Oxidation State 0
Metalloid gold clusters have unique properties with respect to size and structure and are key intermediates in studying transitions between molecular compounds and the bulk phase of the respective metal. In the following, the synthesis of the all-phosphine protected metalloid cluster Au ( Bu P), solely built from gold atoms in the oxidation state of 0 is reported. Single-crystal X-ray analysis revealed a highly symmetric hollow cube-octahedral arrangement of the gold atoms, resembling gold bulk structure. Quantum-chemical calculations illustrated the cluster can be described as a 20-electron superatom. Optical properties of the compound have shown molecular-like behavior
Near Infrared Light Induced Radical Polymerization in Water
We introduce a gold nanorod (AuNR) driven methodology to induce free radical polymerization in water with near infrared light (800 nm). The process exploits photothermal conversion in AuNR and subsequent heat transfer to a radical initiator (here azobisisobutyronitrile) for primary radical generation. A broad range of reaction conditions were investigated, demonstrating control over molecular weight and reaction conversion of dimethylacrylamide polymers, using nuclear magnetic resonance spectroscopy. We underpin our experimental data with finite element simulation of the spatio-temporal temperature profile surrounding the AuNR directly after femtosecond laser pulse excitation. Critically, we evidence that polymerization can be induced through biological tissues given the enhanced penetration depth of the near infrared light. We submit that the presented initiation mechanism in aqueous systems holds promise for radical polymerization in biological environments, including cells
d/f‐Polypnictides Derived by Non‐Classical Ln (2+) Compounds: Synthesis, Small Molecule Activation and Optical Properties
Reduction chemistry induced by divalent lanthanides has been primarily focused on samarium so far. In light of the rich physical properties of the lanthanides, this limitation to one element is a drawback. Since molecular divalent compounds of almost all lanthanides have been available for some time, we used one known and two new non-classical reducing agents of the early lanthanides to establish a sophisticated reduction chemistry. As a result, six new d/f-polyphosphides or d/f-polyarsenides, [K(18-crown-6)] [Cp ''(2)Ln(E-5)FeCp*] (Ln=La, Ce, Nd; E=P, As) were obtained. Their reactivity was studied by activation of P-4, resulting in a selective expansion of the P-5 rings. The obtained compounds [K(18-crown-6)] [Cp ''(2)Ln(P-7)FeCp*] (Ln=La, Nd) are the first examples of an activation of P-4 by a f-element-polypnictide complex. Additionally, the first systematic femtosecond (fs)-spectroscopy investigations of d/f-polypnictides are presented to showcase the advantages of having access to a broader series of lanthanide compounds
Near Infrared Light Induced Radical Polymerization in Water
We introduce a gold nanorod (AuNR) driven methodology to induce free radical polymerization in water with near infrared light (800 nm). The process exploits photothermal conversion in AuNR and subsequent heat transfer to a radical initiator (here azobisisobutyronitrile) for primary radical generation. A broad range of reaction conditions were investigated, demonstrating control over molecular weight and reaction conversion of dimethylacrylamide polymers, using nuclear magnetic resonance spectroscopy. We underpin our experimental data with finite element simulation of the spatio-temporal temperature profile surrounding the AuNR directly after femtosecond laser pulse excitation. Critically, we evidence that polymerization can be induced through biological tissues given the enhanced penetration depth of the near infrared light. We submit that the presented initiation mechanism in aqueous systems holds promise for radical polymerization in biological environments, including cells.</p
Chasing BODIPY: Enhancement of luminescence in homoleptic bis(dipyrrinato) Zn <sup>II</sup> complexes utilizing symmetric and unsymmetrical dipyrrins
Dipyrromethene metal complexes are fascinating molecules that have applications as light-harvesting systems, luminophores, and laser dyes. Recently, it has been shown that structurally rigid bis(dipyrrinato) zinc(II) complexes exhibit high fluorescence with comparable quantum yields to those of boron dipyrromethenes or BODIPYs. Herein, eight new bis(dipyrrinato) Zn
II
complexes, obtained from symmetric and unsymmetrical functionalization of the dipyrromethene structure through a Knoevenagel reaction, are reported. It was possible not only to vary the maximum visible absorption from 490 to 630 nm, but also to enhance the emission quantum yield up to 66 %, which is extraordinarily high for homoleptic bis(dipyrrinato) zinc complexes. These results pave the way for designing highly luminescent bis(dipyrrinato) zinc complexes.
</p
Substituent effects on dynamics at conical intersections: Cycloheptatrienes
Using selective methyl substitution, we study the effects of vibrational dynamics at conical intersections in unsaturated hydrocarbons. Here, we investigate the excited state nonadiabatic dynamics of cycloheptatriene (CHT) and its relation to dynamics in other polyenes by comparing CHT with 7-methyl CHT, 7-ethyl CHT, and perdeuterated CHT using time-resolved photoelectron spectroscopy and photoelectron anisotropy. Our results suggest that, upon \u3c0\u3c0-excitation to the bright 2A\u2033 state, we observe an early intersection with the dark 2A\u2032 state close to the Franck-Condon region with evidence of wavepacket bifurcation. This indicates that the wavepacket evolves on both states, likely along a planarization coordinate, with the majority of the flux undergoing nonadiabatic transition via conical intersections within 100 fs following light absorption. In CHT, large amplitude motion along the planarization coordinate improves the intra-ring \u3c0-overlap, yielding a delocalized electronic density. However, substitutions in 7 position, chosen to modify the inertia of the planarization motion, did not markedly alter the first step in the sequential kinetic scheme. This suggests that there is a crossing of potential energy surfaces before planarization is achieved and, thus, nonadiabatic transition likely takes place far away from a local minimum.Peer reviewed: YesNRC publication: Ye
Elucidating the early steps in photoinitiated radical polymerization via femtosecond pump-probe experiments and DFT calculations
The excited states and dynamics of the three triplet radical photoinitiators benzoin (2-hydroxy-1,2-diphenylethanone, Bz), 2,4,6-trimethylbenzoin (2-hydroxy-1-mesityl-2-phenylethanone, TMB), and mesitil (1,2-bis(2,4,6-trimethylphenyl)-1,2-ethanedione, Me)-employed in our previous studies for quantifying net initiation efficiencies in pulsed laser polymerization with methacrylate monomers [Voll, D.; Junkers, T.; Barner-Kowollik, C. Macromolecules2011, 44, 2542-2551]-are investigated via both femtosecond transient absorption (TA) spectroscopy and density functional theory (DFT) methods to elucidate the underlying mechanisms causing different initiation efficiencies when excited at 351 nm. Bz and TMB are found to have very similar properties in the calculated excited states as well as in the experimentally observed dynamics. After excitation into the first excited singlet state (S 1) Bz and TMB undergo rapid intersystem crossing (ISC). The ISC can compete with ultrafast internal conversion (IC) processes because an excited triplet state (T n) of nearly the same energy is present in both cases. ISC is therefore the dominating depopulation channel of S 1, and subsequent α-cleavage to produce radicals takes place on the picosecond time scale. In contrast, Me is excited into the second excited singlet state (S 2). In this case no isoenergetic triplet state is available, which inhibits ISC from competing with ultrafast deactivation processes. ISC is therefore assigned to be a minor deactivation channel in Me. Employing these findings, quantitative photoinitiation efficiency relations of Bz, TMB, and Me obtained by pulsed laser polymerization can be directly correlated with the relative TA intensities found in the femtosecond experiments. The ISC efficiency is thus a critical parameter for evaluating the overall photoinitiation efficiency and demonstrates that the employment of the herein presented method represents a powerful tool for attaining a quantitative picture on the suitability of a photoinitiator. © 2012 American Chemical Society