398 research outputs found

    Twisted Supersymmetric Gauge Theories and Orbifold Lattices

    Full text link
    We examine the relation between twisted versions of the extended supersymmetric gauge theories and supersymmetric orbifold lattices. In particular, for the N=4\mathcal{N}=4 SYM in d=4d=4, we show that the continuum limit of orbifold lattice reproduces the twist introduced by Marcus, and the examples at lower dimensions are usually Blau-Thompson type. The orbifold lattice point group symmetry is a subgroup of the twisted Lorentz group, and the exact supersymmetry of the lattice is indeed the nilpotent scalar supersymmetry of the twisted versions. We also introduce twisting in terms of spin groups of finite point subgroups of RR-symmetry and spacetime symmetry.Comment: 32 page

    Deformed matrix models, supersymmetric lattice twists and N=1/4 supersymmetry

    Get PDF
    A manifestly supersymmetric nonperturbative matrix regularization for a twisted version of N=(8,8) theory on a curved background (a two-sphere) is constructed. Both continuum and the matrix regularization respect four exact scalar supersymmetries under a twisted version of the supersymmetry algebra. We then discuss a succinct Q=1 deformed matrix model regularization of N=4 SYM in d=4, which is equivalent to a non-commutative A4A_4^* orbifold lattice formulation. Motivated by recent progress in supersymmetric lattices, we also propose a N=1/4 supersymmetry preserving deformation of N=4 SYM theory on R4\R^4. In this class of N=1/4 theories, both the regularized and continuum theory respect the same set of (scalar) supersymmetry. By using the equivalence of the deformed matrix models with the lattice formulations, we give a very simple physical argument on why the exact lattice supersymmetry must be a subset of scalar subalgebra. This argument disagrees with the recent claims of the link approach, for which we give a new interpretation.Comment: 47 pages, 3 figure

    Relations among Supersymmetric Lattice Gauge Theories via Orbifolding

    Full text link
    We show how to derive Catterall's supersymmetric lattice gauge theories directly from the general principle of orbifolding followed by a variant of the usual deconstruction. These theories are forced to be complexified due to a clash between charge assignments under U(1)-symmetries and lattice assignments in terms of scalar, vector and tensor components for the fermions. Other prescriptions for how to discretize the theory follow automatically by orbifolding and deconstruction. We find that Catterall's complexified model for the two-dimensional N=(2,2) theory has two independent preserved supersymmetries. We comment on consistent truncations to lattice theories without this complexification and with the correct continuum limit. The construction of lattice theories this way is general, and can be used to derive new supersymmetric lattice theories through the orbifolding procedure. As an example, we apply the prescription to topologically twisted four-dimensional N=2 supersymmetric Yang-Mills theory. We show that a consistent truncation is closely related to the lattice formulation previously given by Sugino.Comment: 20 pages, LaTeX2e, no figur

    Monetary Policy Issues In Sub-Saharan Africa

    Get PDF

    Exact Vacuum Energy of Orbifold Lattice Theories

    Full text link
    We investigate the orbifold lattice theories constructed from supersymmetric Yang-Mills matrix theories (mother theories) with four and eight supercharges. We show that the vacuum energy of these theories does not receive any quantum correction perturbatively.Comment: 14 pages, no figure, LaTeX2e, typos corrected, errors in references corrected, comments adde

    Supersymmetric Deformations of Type IIB Matrix Model as Matrix Regularization of N=4 SYM

    Full text link
    We construct a Q=1\mathcal{Q}=1 supersymmetry and U(1)5U(1)^5 global symmetry preserving deformation of the type IIB matrix model. This model, without orbifold projection, serves as a nonperturbative regularization for N=4\mathcal{N}=4 supersymmetric Yang-Mills theory in four Euclidean dimensions. Upon deformation, the eigenvalues of the bosonic matrices are forced to reside on the surface of a hypertorus. We explicitly show the relation between the noncommutative moduli space of the deformed matrix theory and the Brillouin zone of the emergent lattice theory. This observation makes the transmutation of the moduli space into the base space of target field theory clearer. The lattice theory is slightly nonlocal, however the nonlocality is suppressed by the lattice spacing. In the classical continuum limit, we recover the N=4\mathcal{N}=4 SYM theory. We also discuss the result in terms of D-branes and interpret it as collective excitations of D(-1) branes forming D3 branes.Comment: Version 2: Extended discussion of moduli space, added a referenc

    Matrix Models, Monopoles and Modified Moduli

    Full text link
    Motivated by the Dijkgraaf-Vafa correspondence, we consider the matrix model duals of N=1 supersymmetric SU(Nc) gauge theories with Nf flavors. We demonstrate via the matrix model solutions a relation between vacua of theories with different numbers of colors and flavors. This relation is due to an N=2 nonrenormalization theorem which is inherited by these N=1 theories. Specializing to the case Nf=Nc, the simplest theory containing baryons, we demonstrate that the explicit matrix model predictions for the locations on the Coulomb branch at which monopoles condense are consistent with the quantum modified constraints on the moduli in the theory. The matrix model solutions include the case that baryons obtain vacuum expectation values. In specific cases we check explicitly that these results are also consistent with the factorization of corresponding Seiberg-Witten curves. Certain results are easily understood in terms of M5-brane constructions of these gauge theories.Comment: 27 pages, LaTeX, 2 figure

    Lattice formulation of (2,2) supersymmetric gauge theories with matter fields

    Full text link
    We construct lattice actions for a variety of (2,2) supersymmetric gauge theories in two dimensions with matter fields interacting via a superpotential.Comment: 13 pages, 2 figures. Appendix added, references updated, typos fixe

    Deconstruction and other approaches to supersymmetric lattice field theories

    Full text link
    This report contains both a review of recent approaches to supersymmetric lattice field theories and some new results on the deconstruction approach. The essential reason for the complex phase problem of the fermion determinant is shown to be derivative interactions that are not present in the continuum. These irrelevant operators violate the self-conjugacy of the fermion action that is present in the continuum. It is explained why this complex phase problem does not disappear in the continuum limit. The fermion determinant suppression of various branches of the classical moduli space is explored, and found to be supportive of previous claims regarding the continuum limit.Comment: 70 page
    corecore