1,706 research outputs found

    Long-wavelength metric backreactions in slow-roll inflation

    Full text link
    We examine the importance of second order corrections to linearized cosmological perturbation theory in an inflationary background, taken to be a spatially flat FRW spacetime. The full second order problem is solved in the sense that we evaluate the effect of the superhorizon second order corrections on the inhomogeneous and homogeneous modes of the linearized flucuations. These second order corrections enter in the form of a {\it cumulative} contribution from {\it all} of their Fourier modes. In order to quantify their physical significance we study their effective equation of state by looking at the perturbed energy density and isotropic pressure to second order. We define the energy density (isotropic pressure) in terms of the (averaged) eigenvalues associated with timelike (spacelike) eigenvectors of a total stress energy for the metric and matter fluctuations. Our work suggests that that for many parameters of slow-roll inflation, the second order contributions to these energy density and pressures may dominate over the first order effects for the case of super-Hubble evolution. These results hold in our choice of first and second order coordinate conditions however we also argue that other `reasonable` coordinate conditions do not alter the relative importance of the second order terms. We find that these second order contributions approximately take the form of a cosmological constant in this coordinate gauge, as found by others using effective methods.Comment: Submitted to Phys. Rev.

    Universal approach to gravitational thermal effects

    Full text link
    A universal scheme for describing gravitational thermal effects is developed as a generalization of Unruh effect. Quasi-Rindler (QR) coordinates are constructed in an arbitrary curved space-time in such a way that the imaginary QR time be periodical. The observer at rest in QR coordinates should experience a thermal effect. Application to de Sitter space-time is considered.Comment: 8 pages, LATE

    Trans-Planckian Tail in a Theory with a Cutoff

    Get PDF
    Trans-planckian frequencies can be mimicked outside a black-hole horizon as a tail of an exponentially large amplitude wave that is mostly hidden behind the horizon. The present proposal requires implementing a final state condition. This condition involves only frequencies below the cutoff scale. It may be interpreted as a condition on the singularity. Despite the introduction of the cutoff, the Hawking radiation is restored for static observers. Freely falling observers see empty space outside the horizon, but are "heated" as they cross the horizon.Comment: 17 pages, RevTe

    Increasing future gravitational-wave detectors sensitivity by means of amplitude filter cavities and quantum entanglement

    Full text link
    The future laser interferometric gravitational-wave detectors sensitivity can be improved using squeezed light. In particular, recently a scheme which uses the optical field with frequency dependent squeeze factor, prepared by means of a relatively short (~30 m) amplitude filter cavity, was proposed \cite{Corbitt2004-3}. Here we consider an improved version of this scheme, which allows to further reduce the quantum noise by exploiting the quantum entanglement between the optical fields at the filter cavity two ports.Comment: 10 pages, 7 figure

    First Order Corrections to the Unruh Effect

    Get PDF
    First order corrections to the Unruh effect are calculated from a model of an accelerated particle detector of finite mass. We show that quantum smearing of the trajectory and large recoil essentially do not modify the Unruh effect. Nevertheless, we find corrections to the thermal distribution and to the Unruh temperature. In a certain limit, when the distribution at equilibrium remains exactly thermal, the corrected temperature is found to be T=TU(1−TU/M)T = T_U( 1 - T_U/M), where TUT_U is the Unruh temperature. We estimate the consequent corrections to the Hawking temperature and the black hole entropy, and comment on the relationship to the problem of trans-planckian frequencies.Comment: 23 pages, LaTe

    Relativistic Quantum Measurements, Unruh effect and Black Holes

    Get PDF
    It is shown how the technique of restricted path integrals (RPI) or quantum corridors (QC) may be applied for the analysis of relativistic measurements. Then this technique is used to clarify the physical nature of thermal effects as seen by an accelerated observer in Minkowski space-time (Unruh effect) and by a far observer in the field of a black hole (Hawking effect). The physical nature of the "thermal atmosphere" around the observer is analysed in three cases: a) the Unruh effect, b) an eternal (Kruskal) black hole and c) a black hole forming in the process of collapse. It is shown that thermal particles are real only in the case (c). In the case (b) they cannot be distinguished from real particles but they do not carry away mass of the black hole until some of these particles are absorbed by the far observer. In the case (a) thermal particles are virtual.Comment: 24 pages (Latex), 8 EPS figures The text was edited for the new versio

    Origin of the Thermal Radiation in a Solid-State Analog of a Black-Hole

    Get PDF
    An effective black-hole-like horizon occurs, for electromagnetic waves in matter, at a surface of singular electric and magnetic permeabilities. In a physical dispersive medium this horizon disappears for wave numbers with k>kck>k_c. Nevertheless, it is shown that Hawking radiation is still emitted if free field modes with k>kck>k_c are in their ground state.Comment: 13 Pages, 3 figures, Revtex with epsf macro
    • 

    corecore