2,838 research outputs found

    Maintaining coherence in Quantum Computers

    Get PDF
    The effect of the inevitable coupling to external degrees of freedom of a quantum computer are examined. It is found that for quantum calculations (in which the maintenance of coherence over a large number of states is important), not only must the coupling be small but the time taken in the quantum calculation must be less than the thermal time scale, /kBT\hbar/k_B T. For longer times the condition on the strength of the coupling to the external world becomes much more stringent.Comment: 13 page

    Temperature of a Decoherent Oscillator with Strong Coupling

    Full text link
    The temperature of an oscillator coupled to the vacuum state of a heat bath via ohmic coupling is non-zero, as measured by the reduced density matrix of the oscillator. This paper shows that the actual temperature, as measured by a thermometer is still zero (or in the thermal state of the bath, the temperature of the bath). The decoherence temperature is due to "false-decoherence", with the heat bath state being dragged along with the oscillator.Comment: 6 page

    Inappropriateness of the Rindler quantization

    Full text link
    It is argued that the Rindler quantization is not a correct approach to study the effects of acceleration on quantum fields. First, the "particle"-detector approach based on the Minkowski quantization is not equivalent to the approach based on the Rindler quantization. Second, the event horizon, which plays the essential role in the Rindler quantization, cannot play any physical role for a local noninertial observer.Comment: 3 pages, accepted for publication in Mod. Phys. Lett.

    Classical aspects of Hawking radiation verified in analogue gravity experiment

    Full text link
    There is an analogy between the propagation of fields on a curved spacetime and shallow water waves in an open channel flow. By placing a streamlined obstacle into an open channel flow we create a region of high velocity over the obstacle that can include wave horizons. Long (shallow water) waves propagating upstream towards this region are blocked and converted into short (deep water) waves. This is the analogue of the stimulated Hawking emission by a white hole (the time inverse of a black hole). The measurements of amplitudes of the converted waves demonstrate that they appear in pairs and are classically correlated; the spectra of the conversion process is described by a Boltzmann-distribution; and the Boltzmann-distribution is determined by the determined by the change in flow across the white hole horizon.Comment: 17 pages, 10 figures; draft of a chapter submitted to the proceedings of the IX'th SIGRAV graduate school: Analogue Gravity, Lake Como, Italy, May 201

    Radiation Reaction fields for an accelerated dipole for scalar and electromagnetic radiation

    Get PDF
    The radiation reaction fields are calculated for an accelerated changing dipole in scalar and electromagnetic radiation fields. The acceleration reaction is shown to alter the damping of a time varying dipole in the EM case, but not the scalar case. In the EM case, the dipole radiation reaction field can exert a force on an accelerated monopole charge associated with the accelerated dipole. The radiation reaction of an accelerated charge does not exert a torque on an accelerated magnetic dipole, but an accelerated dipole does exert a force on the charge. The technique used is that originally developed by Penrose for non-singular fields and extended by the author for an accelerated monopole charge.Comment: 11 page

    Yet Another Model of Soft Gamma Repeaters

    Full text link
    We develop a model of SGR in which a supernova leaves planets orbiting a neutron star in intersecting eccentric orbits. These planets will collide in 104\sim 10^4 years if their orbits are coplanar. Some fragments of debris lose their angular momentum in the collision and fall onto the neutron star, producing a SGR. The initial accretion of matter left by the collision with essentially no angular momentum may produce a superburst like that of March 5, 1979, while debris fragments which later lose their angular momentum produce an irregular pattern of smaller bursts.Comment: 16pp, Tex, WU-JIK-94-

    Difficulties with Recollapsing models in Closed Isotropic Loop Quantum Cosmology

    Full text link
    The use of techniques from loop quantum gravity for cosmological models may solve some difficult problems in quantum cosmology. The solutions under a number of circumstances have been well studied. We will analyse the behaviour of solutions in the closed model, focusing on the behaviour of a universe containing a massless scalar field. The asymptotic behaviour of the solutions is examined, and is used to determine requirements of the initial conditions.Comment: 10 pages, accepted to Phys. Rev.

    Solar irradiance models and measurements: a comparison in the 220 nm to 240 nm wavelength band

    Full text link
    Solar irradiance models that assume solar irradiance variations to be due to changes in the solar surface magnetic flux have been successfully used to reconstruct total solar irradiance on rotational as well as cyclical and secular time scales. Modelling spectral solar irradiance is not yet as advanced, and also suffers from a lack of comparison data, in particular on solar-cycle time scales. Here we compare solar irradiance in the 220 nm to 240 nm band as modelled with SATIRE-S and measured by different instruments on the UARS and SORCE satellites. We find good agreement between the model and measurements on rotational time scales. The long-term trends, however, show significant differences. Both SORCE instruments, in particular, show a much steeper gradient over the decaying part of cycle 23 than the modelled irradiance or that measured by UARS/SUSIM.Comment: 8 pages, 2 figures, conference proceedings to appear in Surveys in Geophysic

    Data Fusion for Decision Support

    Get PDF
    This thesis demonstrates the utility of fusing data from multiple sources, including remote sensing data, in a Geographic Information System (GIS) for decision support by designing a new method of assessing wildfire risk in the wilderness urban interface (WUI) to facilitate better informed land management decisions and reduce mission impacts of wildfires on the military. Information from remote sensing systems has been used for decades to support decisions. Today, data are time and location tagged, making it possible to correlate and fuse disparate sources in a GIS, from which data can be stored, analyzed, and the resulting information shared. The GIS, relating data based on spatial attributes, has become an ideal fusion platform and decision support tool. In demonstration, decades of work in fire science were put to work, applying the Fire Susceptibility Index (FSI) on a new, 30 m scale with Landsat 8 data. Eight data sources were fused in a GIS to identify high-risk patches of wildland by calculating the FSI and preparing it for meaningful analysis and sharing. The initial results, qualitatively validated with wildfire behavior basics, appear promising, providing a view of fire danger in the landscape not seen in the current state of practice

    The Relation of Thermal Fluctuation and Information-Entropy for One-Dimensional Rindler Oscillator

    Get PDF
    Within the framework of thermo-field-dynamics (TFD), the information-entropies associated with the measurements of position and momentum for one-dimensional Rindler oscillator are derived, and the connection between its information-entropy and thermal fluctuation is obtained. A conclusion is drawn that the thermal fluctuation leads to the loss of information.Comment: 14 pages, 1 figur
    corecore