40 research outputs found

    The K computer Operations: Experiences and Statistics

    Get PDF
    AbstractThe K computer, released on September 29, 2012, is a large-scale parallel supercomputer system consisting of 82,944 compute nodes. We have been able to resolve a significant number of operation issues since its release. Some system software components have been fixed and improved to obtain higher stability and utilization. We achieved 94% service availability because of a low hardware failure rate and approximately 80% node utilization by careful adjustment of operation parameters. We found that the K computer is an extremely stable and high utilization system

    Outlier Events of Solar Forecasts for Regional Power Grid in Japan Using JMA Mesoscale Model

    No full text
    To realize the safety control of electric power systems under high penetration of photovoltaic power systems, accurate global horizontal irradiance (GHI) forecasts using numerical weather prediction models (NWP) are becoming increasingly important. The objective of this study is to understand meteorological characteristics pertaining to large errors (i.e., outlier events) of GHI day-ahead forecasts obtained from the Japan Meteorological Agency, for nine electric power areas during four years from 2014 to 2017. Under outlier events in GHI day-ahead forecasts, several sea-level pressure (SLP) patterns were found in 80 events during the four years; (a) a western edge of anticyclone over the Pacific Ocean (frequency per 80 outlier events; 48.8%), (b) stationary fronts (20.0%), (c) a synoptic-scale cyclone (18.8%), and (d) typhoons (tropical cyclones) (8.8%) around the Japanese islands. In this study, the four case studies of the worst outlier events were performed. A remarkable SLP pattern was the case of the western edge of anticyclone over the Pacific Ocean around Japan. The comparison between regionally integrated GHI day-ahead forecast errors and cloudiness forecasts suggests that the issue of accuracy of cloud forecasts in high- and mid-levels troposphere in NWPs will remain in the future

    Solar Irradiance Forecasts by Mesoscale Numerical Weather Prediction Models with Different Horizontal Resolutions

    No full text
    This study examines the performance of radiation processes (shortwave and longwave radiations) using numerical weather prediction models (NWPs). NWP were calculated using four different horizontal resolutions (5, 2 and 1 km, and 500 m). Validation results on solar irradiance simulations with a horizontal resolution of 500 m indicated positive biases for direct normal irradiance dominate for the period from 09 JST (Japan Standard Time) to 15 JST. On the other hand, after 15 JST, negative biases were found. For diffused irradiance, weak negative biases were found. Validation results on upward longwave radiation found systematic negative biases of surface temperature (corresponding to approximately −2 K for summer and approximately −1 K for winter). Downward longwave radiation tended to be weak negative biases during both summer and winter. Frequency of solar irradiance suggested that the frequency of rapid variations of solar irradiance (ramp rates) from the NWP were less than those observed. Generally, GHI distributions between the four different horizontal resolutions resembled each other, although horizontal resolutions also became finer
    corecore