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Abstract
The K computer, released on September 29, 2012, is a large-scale parallel supercomputer system
consisting of 82,944 compute nodes. We have been able to resolve a significant number of oper-
ation issues since its release. Some system software components have been fixed and improved
to obtain higher stability and utilization. We achieved 94% service availability because of a low
hardware failure rate and approximately 80% node utilization by careful adjustment of oper-
ation parameters. We found that the K computer is an extremely stable and high utilization
system.
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1 Introduction

Supercomputers are indispensable tools for solving several social issues by conducting computer
simulations in various fields of science and engineering, and are often used in academic research
and in industry. Therefore, many countries focused their efforts on developing supercomputers
to maintain national competitiveness.

Development of large-scale supercomputers is undoubtedly important; however, the man-
agement and operation of such supercomputers is a significant concern. Most supercomputers
are requested to be stable in operations and to have easy-to-use environments.

More than a year has passed since we released the K computer to users on September 29,
2012. The K computer is a large-scale parallel supercomputer system developed by RIKEN
Advanced Institute for Computational Science (AICS) in cooperation with Fujitsu Ltd.[1] It is
expected to provide stable operations and high utilization by taking many user requirements
into consideration so that it can be used efficiently in various research fields.
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We have learned a significant amount about operational issues of the K computer since
its official release. Some system software components have been fixed and improved to ob-
tain greater stability and utilization. In this paper, we describe the K computer operational
experiences and present some statistics with respect to utilization for a year.

2 System and power consumption

2.1 System

The K computer is a distributed memory supercomputer system consisting of 82,944 compute
nodes and 5,184 I/O nodes, two kinds of file systems, control and management servers, and
front-end servers. Each compute node is primarily composed of a CPU, 16 GB memory, and an
interconnect LSI. The CPU is a SPARC64 VIIIfx[2] with 8 cores operating at a clock frequency
of 2 GHz and 6 MB of shared L2 cache. Its peak performance and performance per Watt are 128
GFLOPS and 2.2 GFLOPS/Watt, respectively. Each core has four floating-point multiply-and-
add execution units, two of which are operated concurrently by SIMD instruction. The Tofu[3]
interconnect network is a six-dimensional mesh/torus network used for data communication
among compute nodes. The interconnect controller (ICC) is directly connected to a CPU, and
each ICC has ten routes connecting ten adjacent nodes. Multiple communication routes can be
taken to communicate among nodes. From a programming perspective, one-, two-, or three-
dimensional torus network topologies can always be used for a job; e.g., a torus network can
be configured dynamically when a job is assigned to a portion of the K computer by indicating
the required topology in a job script.

The operating system for nodes is Linux. Fortran, C, and C++ programming languages are
provided for users to maintain conventional programming environments. Those compilers can
automatically generate binary codes executable concurrently which are carried out by threads
within the CPU. The K computer provides a three-level parallel programming model to at-
tain high sustained performance. The first level of parallel processing is SIMD processing in
the core, the second level is thread programing on the compute node supported by automatic
parallelization or OpenMP[4] directives, and the third level is distributed-memory parallel pro-
cessing programming with the Message Passing Interface (MPI)[5] library over several compute
nodes. The MPI library of the K computer is based on an implementation of OpenMPI[6],
in which several functions are specially implemented using native Tofu interfaces to achieve
high performance[7]. The job scheduler is the Fujitsu Parallelnavi, which has been specifically
optimized for the K computer. Some development tools, including XcalableMP[8] are installed

Figure 1: System configuration. (numbers in parentheses denote either total performance or
total memory capacity, including those of I/O nodes)
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under the support of developers.
Two kinds of file systems, a 30 PB global file system and an 11 PB local file system, are

implemented based on the Lustre file system[9]. Users’ permanent files are placed on the global
file system. If a user submits a job to the K computer and files on the global file system are
required to run the job, the files are moved to the local file system before the job starts by
staging functions (staging-in). After the job ends, files created during the job on the local
file system are moved to the global file system (staging-out). These file-staging operations are
managed automatically by the job manager.

The system configuration is shown in Fig. 1. Peak performance, memory capacity, and
footprint area of each level are also described. The K computer is designed as a “thin node”
system in which a node contains one CPU. Four nodes are mounted on a system board (SB),
and 24 system boards are installed into a compute rack. There are a total of 864 compute racks.

Reliability, availability, and serviceability (RAS) were carefully considered in when designing
and constructing the K computer. The memory modules have ECC functions, which can correct
one-bit errors and recognize two-bit errors. If a one-bit error is detected in the memory module
during operation, the memory module is replaced as quickly as possible. When an SB failure
occurs, the SB is stopped and replaced with a new SB immediately during operation. This
takes approximately two hours. The system keeps working, except for the four nodes on the
failed SB. The new SB rejoins normal operation as soon as it is available. Critical components
such as a power distributing unit in a compute rack and control and management servers are
duplicated and have hot-swap functionality to avoid one-point failures.

2.2 Power consumption

Recent parallel computer systems constructed with a tremendous number of components con-
sume a large amount of electricity even though the power consumption of each component, such
as the CPU, has been reduced due to technological development and innovation. The power
consumption of large-scale computer systems is currently a significant issue. Power usage effec-
tiveness (PUE) is a measure of how efficiently a computing system uses energy.

We have four buildings, i.e., the computer building, the chillers building, the substation
supply building, and the research building. The electricity is fed by a few distribution lines to
the floors of the buildings, and the amount of power consumed by each floor can be measured.
We have classified electricity distribution lines into four blocks, i.e., “K computer,” “air-handling
units,” “chillers,” and “others”. Figure 2 shows the average electric power for each block. Total
electric power of the AICS facility is approximately 15,000 kW. The electric power of the K
computer was approximately 12,000 kW (80% of the total) and has increased gradually over
time. We have concluded that applications were highly optimized to the K computer and
therefore it consumed more power.

We employ a tool that calculates PUE each hour to analyze the relationship between K
computer operations and power consumption. This facilitates improving the management of
the facility. Figure 3 shows the electric power and PUE for 60 hours from November 12 to
November 14, 2013. PUE changed in the range 1.20 to 1.27 depending on the K computer job
load. As can be seen, good PUE is obtained at AICS.

3 Failure statistics

Statistics for hardware and software failures were collected between October 2012 and Septem-
ber 2013. We have classified hardware failures into three groups according to specific hardware
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Figure 2: Average electric power between
October 2012 and September 2013

Figure 3: Electric power (red line) and PUE
(blue line) for 60 hours from November 12 to
November 14, 2013

Figure 4: Failure rates in terms of hardware compo-
nents and the number of failures resulting in abnor-
mal termination of jobs

Figure 5: Number of failures in terms of
software components

components, i.e., “Compute rack,” “Storage,” and “Peripheral” groups. The compute rack
group includes the failures of parts inside the compute rack such as CPU, ICC, memory mod-
ule, SB and rack (sensor, PCI interface, etc.). The storage group includes the failures of hard
disk drives (HDD) and HDD controllers. The peripheral group includes the failures of parts
other than compute rack and storage components such as network switches and servers. Fig-
ure 4 shows the failure rate of each group. The solid line denotes the number of failures that
resulted in abnormal termination of jobs.

Compute rack system failure were caused by failures in the CPU, ICC, memory module,
SB, system disk, etc. Among them, failures affecting running jobs are the failures of the CPU,
ICC, and SB. The number of failures was less than 25 each month. It is obvious that the
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Figure 6: The K computer operation time between October 2012 and September 2013

RAS facilities of the K computer have resulted in a small number of failures. Storage and
peripheral failures do not result in serious system down because of the duplication of servers
and connection paths, and do not affect running jobs.In addition, the failure rate of compute
racks is much less than that of the storage and the peripherals group.

Figure 5 shows the number of software failures. The number of failures for the first five
months of official operation was relatively high. However, the number of software failures
decreased after some modifications and improvements were applied in March 2013. Major
software failures were caused in the system and operating software such as the file system and
the job manager.

Figure 6 shows the rate of trouble-free operation time (93.0%), scheduled maintenance time
(5.4%), and system failure time (1.6%) for 8,817 hours between October 2012 and September
2013. As can be seen, the system failure time is very short. The pie chart on the right shows a
breakdown of system failures that were found in file systems, the job scheduler, MPI libraries,
and others. As can be seen, the majority of system failures are caused by the file system. Some
file system failures are caused by original bugs in the Lustre file system; the bugs have been
reported to the Lustre community.

4 Job statistics

4.1 Job queues and job types

The current scheduling policy gives uses a fair chance for job execution. First-come and first-
serve (FCFS) and back-filling scheduling are adopted. Submitted jobs are placed at an appro-
priate space in node-time scheduling space by the job manager. Compute nodes are divided into
resource groups as job queues, and there are three groups, i.e., Small for jobs with 1–384 nodes,
Large for jobs with 385–36,864 nodes, and Huge for jobs with 36,865–82,944 nodes. During
normal operation, Small and Large resource groups are available and Huge is disabled. The
jobs in Huge are processed during a designated period (contiguous three days per month).

Depending on the execution pattern, four job types are available: normal jobs, step jobs,
bulk jobs, and interactive jobs. A normal job is a general batch job. A step job is a batch
job that applies an execution sequence or dependency to jobs. A bulk job is a set of multiple
normal jobs that are submitted simultaneously and executed with the different bulk numbers
provided. An interactive job is a job that is executed interactively.
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Figure 7: Number of executed jobs (left) and amount of used resources (right)

Figure 8: Number of executed jobs (left) and amount of resources used (right) by elapsed job
time (rightmost red rectangle denotes jobs over 24 hours elapsed time; solid lines are cumulative
values)

4.2 Job characteristics

The characteristics of jobs executed on the K computer have also been analyzed. The knowledge
of jobs is important to decide operation policy for job scheduling. In addition, the results of
the analysis can help determine optimal parameters for the operating system, file systems, job
scheduler, etc. Figure 7 shows the number of executed jobs (left) and the amount of used
resources (right) between October 2012 and September 2013. Used resources are the product
of the number of used nodes and the elapsed time. The resources used in November 2012,
February 2013, and August 2013 decreased compared with the resources used in the respective
previous months. System maintenance was conducted in these months; thus, operation time
was less than that of other months.

At the beginning of the official release, we provided one job queue for all jobs. We expected
that small-size jobs would be processed during gap spaces between large-size jobs in terms of
node-time scheduling space; therefore, node utilization had to be high. However, many small-
size jobs disturbed the execution of large-size jobs, and node utilization was very low. Therefore,
we decided to divide the single job queue into two queues Small and Large in the middle of
February 2013. After this modification, most jobs submitted have become larger and require
long time. During the first year of operation, we also tuned scheduling parameters, such as file
staging timing and the maximum number of jobs executed simultaneously for each user group,
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Figure 9: Number of executed job (left) and amount of resources used (right) by job efficiency
(solid lines are cumulative values)

and achieved approximately 80% node utilization in September 2013.
We have analyzed job characteristics for approximately 275,000 jobs between October 2012

and September 2013, which used 420,000,000 Node*Hour computational resources. Figure 8
shows the number of jobs and used resources at a 30-minute interval of elapsed job time. The
short jobs (under 30 minutes) account for 60% of all the jobs. Jobs under two hours account
for 80% of all the jobs. However, jobs under two hours used approximately 20% of all compu-
tational resources. Although the number of long jobs (over 12 hours) represents 5% of all jobs,
these jobs used 40% of all the computational resources. Figure 9 shows the frequency of sus-
tained performance efficiency. Approximately 220,000 jobs, which used 369,000,000 Node*Hour
computational resources are analyzed. The jobs under 13% efficiency account for 90% of the
total number of jobs. 90% of all computational resources are used by jobs that have less than
28% efficiency.

4.3 Job waiting time

Figure 10 shows the average waiting time with respect to job sizes and elapsed times. This
figure shows that the waiting time for jobs with longer elapsed time and a larger number of
nodes is longer than that of jobs with shorter elapsed time and a smaller number of nodes. This
trend represents our scheduling policy, which gives users a fair opportunity for job execution.
The average waiting time in March and September was longer than that in other months. Each
project was given appropriate compute resources for a year, and the resources were divided
into two seasons: from April to September and from October to March of the next year. Users
attempt to use up the remaining compute resources at the end of each season and submit
many jobs in March and September. Therefore, the waiting time for jobs is longer in those two
months.

5 Analysis of languages and parallelization

Information on the invocation of Fortran, C, and C++ compilers was collected between Septem-
ber 28, 2012 and November 30, 20131. This information includes the number of invocations,

1Statistics were not logged between March 1, 2013 and May 14, 2013 due to a failure.
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Figure 10: Average waiting time

compiler options specified by users, and linked libraries. In addition, information for each
executed job was recorded.

Our final goal was to obtain knowledge on how choice of programming languages and par-
allelization methods affect the execution performance of programs; however, the information
recorded was insufficient for this goal. Thus, we plan to extend the content of the information
we collect. In this section, we show some of the results of the analysis based on the existing
information.

5.1 Languages

Three programming languages, Fortran, C, and C++, are available on the K computer. Fig-
ure 11 shows the rate of invocations for each compiler. It can be seen that Fortran was dominant,
although C and even C++ become quite popular in the area of HPC.

5.2 Thread parallelization

The advantage of intra-node thread parallelization can be taken with either OpenMP or a
compiler’s automatic parallelization. The OpenMP parallelization is invoked with a compiler
option “-Kopenmp,” and automatic parallelization is invoked with either “-Kparallel” or “-
Kvisimpact.” The proportions of invocations of each type of thread parallelization are shown
in Fig. 12.

Pure OpenMP parallelization is invoked three times more frequently than pure automatic
parallelization. Note that it is possible to mix OpenMP and automatic parallelization in a
program, and that mixed parallelization is used more frequently than pure automatic paral-
lelization. On the other hand, the case in which no thread-level parallelization is specified is
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Figure 11: Number of invocations of each
language compiler

Figure 12: Number of invocations of thread
parallelization

much more prominent than cases with any thread-level parallelization.

5.3 Inter-node parallelization

Both “hybrid-MPI” and “flat-MPI” can be used to apply inter-node parallelism. It is recom-
mended that users exploit hybrid-MPI, particularly when their program runs on a large number
of nodes, for the following reasons.

• Memory size
As the number of nodes increases, the size of the communication buffer that the MPI library
allocates implicitly and internally also increases.

• Efficiency of collective communications
The number of steps of iterative algorithms for collective communications increases and efficiency
decreases as the number of nodes increase.

We have analyzed the performance of hybrid- and flat-MPI based on the user-specified job
parameters in the job scripts. These parameters include the following:

• node: the number of nodes allocated for the job

• shape: the number of nodes onto which the initial MPI processes are arranged

• proc: the number of the initial MPI processes

It can be said that the initial MPI processes are invoked on all nodes allocated for a job when
node = shape 2, hybrid-MPI is adopted when proc = shape, and flat-MPI is adopted when
proc = shape × 8 3. Note that, because of the limitations of logging capacities, performance
statistics were saved only for the jobs that were neither bulk nor step jobs, were normally
finished, and were executed without the performance profiler tools. The number of jobs and
the average FLOPS value per node for hybrid- and flat-MPI parallelization between September
28, 2012 and October 31, 2013 are shown in Table 1.

It can be seen that approximately six times as many hybrid-MPI jobs have been executed,
and the hybrid-MPI performance is nearly equal to that of flat-MPI, which is contrasts our
prediction. We assume that hybrid-MPI has an advantage, particularly in very large-size jobs.
However, analysis based on the number of nodes has not clarified this and it remains a future
consideration.

2If users employ features of dynamic process creation (e.g., MPI Spawn), then shape should be less than
node.

3Note that cases in which just one node are used (serial execution), there is no thread parallelization and
“moderate-MPI” (e.g., 2threads× 4processes in a node) is ignored.
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Table 1: Performance of inter-node parallelization
number of jobs average GFLOPS/node

hybrid 158,568 5.10
flat 25,820 5.11
others 19,717 3.45
total 204,105 4.94

6 Summary

The K computer is one of the most massively parallel supercomputers in the world. After
operation began on September 29, 2012, we have faced and solved various issues and failures.
In particular, file system failures have caused serious system service down, as was described
in Section 3. Such service down rarely occurs in ordinary sized supercomputers. Despite
the various troubles and failures described in Sections 3 and 4, we have achieved 94% service
availability and approximately 80% node utilization, which are attributed to the low hardware
failure rate and the high level RAS functions of the K computer.

The hybrid-MPI programming model is recommended for the K computer. However, ac-
cording to utilization analysis in terms of language and parallelization, we have observed that
many users choose to adopt the “flat-MPI” programming model. For more efficient utilization
of the K computer, we must introduce users to hybrid-MPI via user support and training.

In future, we will continue to improve the stability and usability of the system and user envi-
ronment. We hope that the experiences discussed in this paper will provide useful information
for effective operation and utilization of large scale supercomputers.
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