75 research outputs found

    Radiosensitization by telomerase-dependent oncolytic adenovirus

    Get PDF
    DNA修復機能阻害は放射線感受性を増強させるため,DNA修復に関与する因子の阻害剤は放射線増感剤となり得る.我々の開発したテロメラーゼ依存的腫瘍融解アデノウイルス製剤OBP-301(テロメライシン)は,アデノウイルスE1B55kDaタンパクを介して細胞のDNA修復に重要な役割を果たすMRN複合体(Mre11,Rad50,NBS1)を分解する機能を有する.このMRN複合体の分解によりATM(ataxia-telangiectasia mutated)の活性化が抑制され結果的にDNA修復機構が阻害される.我々はOBP-301と放射線との併用が強力な相乗効果を生み出すことをマウスの皮下腫瘍モデルおよび食道癌同所性モデルにおいて証明した.これらの結果はOBP-301が将来有望な放射線増感剤となり得ることだけでなく,E1B55kDaタンパクを産生する腫瘍融解アデノウイルス製剤と放射線との併用が悪性腫瘍に対する有力な治療戦略となり得ることを示す

    A Genetically Engineered Oncolytic Adenovirus Decoys and Lethally Traps Quiescent Cancer Stem-like Cells in S/G(2)/M Phases

    Get PDF
    Purpose: Because chemoradiotherapy selectively targets proliferating cancer cells, quiescent cancer stem-like cells are resistant. Mobilization of the cell cycle in quiescent leukemia stem cells sensitizes them to cell death signals. However, it is unclear that mobilization of the cell cycle can eliminate quiescent cancer stem-like cells in solid cancers. Thus, we explored the use of a genetically-engineered telomerase-specific oncolytic adenovirus, OBP-301, to mobilize the cell cycle and kill quiescent cancer stem-like cells. Experimental Design: We established CD133(+) cancer stem-like cells from human gastric cancer MKN45 and MKN7 cells. We investigated the efficacy of OBP-301 against quiescent cancer stem-like cells. We visualized the treatment dynamics of OBP-301 killing of quiescent cancer stem-like cells in dormant tumor spheres and xenografts using a fluorescent ubiquitination cell-cycle indicator (FUCCI). Results: CD133(+) gastric cancer cells had stemness properties. OBP-301 efficiently killed CD133(+) cancer stem-like cells resistant to chemoradiotherapy. OBP-301 induced cell-cycle mobilization from G(0)-G(1) to S/G(2)/M phases and subsequent cell death in quiescent CD133(+) cancer stem-like cells by mobilizing cell-cycle-related proteins. FUCCI enabled visualization of quiescent CD133(+) cancer stem-like cells and proliferating CD133(-) non-cancer stem-like cells. Three-dimensional visualization of the cell-cycle behavior in tumor spheres showed that CD133(+) cancer stem-like cells maintained stemness by remaining in G(0)-G(1) phase. We showed that OBP-301 mobilized quiescent cancer stem-like cells in tumor spheres and xenografts into S/G(2)/M phases where they lost viability and cancer stem-like cell properties and became chemosensitive. Conclusion: Oncolytic adenoviralinfection is an effective mechanism of cancer cell killing in solid cancer and can be a new therapeutic paradigm to eliminate quiescent cancer stem-like cells

    Dual Programmed Cell Death Pathways Induced by p53 Transactivation Overcome Resistance to Oncolytic Adenovirus in Human Osteosarcoma Cells

    Get PDF
    Tumor suppressor p53 is a multifunctional transcription factor that regulates diverse cell fates, including apoptosis and autophagy in tumor biology. p53 overexpression enhances the antitumor activity of oncolytic adenoviruses; however, the molecular mechanism of this occurrence remains unclear. We previously developed a tumor-specific replication-competent oncolytic adenovirus, OBP-301, that kills human osteosarcoma cells, but some human osteosarcoma cells were OBP-301-resistant. In this study, we investigated the antitumor activity of a p53-expressing oncolytic adenovirus, OBP-702, and the molecular mechanism of the p53-mediated cell death pathway in OBP-301-resistant human osteosarcoma cells. The cytopathic activity of OBP-702 was examined in OBP-301-sensitive (U2OS and HOS) and OBP-301-resistant (SaOS-2 and MNNG/HOS) human osteosarcoma cells. The molecular mechanism in the OBP-702-mediated induction of two cell death pathways, apoptosis and autophagy, was investigated in OBP-301-resistant osteosarcoma cells. The antitumor effect of OBP-702 was further assessed using an orthotopic OBP-301-resistant MNNG/HOS osteosarcoma xenograft tumor model. OBP-702 suppressed the viability of OBP-301-sensitive and -resistant osteosarcoma cells more efficiently than OBP-301 or a replication-deficient p53-expressing adenovirus (Ad-p53). OBP-702 induced more profound apoptosis and autophagy when compared with OBP-301 or Ad-p53. E1A-mediated miR-93/106b upregulation induced p21 suppression, leading to p53-mediated apoptosis and autophagy in OBP-702-infected cells. p53 overexpression enhanced adenovirus-mediated autophagy through activation of damage-regulated autophagy modulator (DRAM). Moreover, OBP-702 suppressed tumor growth in an orthotopic OBP-301-resistant MNNG/HOS xenograft tumor model. These results suggest that OBP-702-mediated p53 transactivation is a promising antitumor strategy to induce dual apoptotic and autophagic cell death pathways via regulation of miRNA and DRAM in human osteosarcoma cells. Mol Cancer Ther; 12(3); 314-25

    Preclinical evaluation of telomerase-specific oncolytic virotherapy for human bone and soft tissue sarcomas

    Get PDF
    骨・軟部肉腫は, 一部に治療抵抗性で予後の悪い症例が存在するため, 新たな治療法の確立が重要な課題である. 我々は, 5型アデノウイルスを基本骨格として, テロメラーゼ活性に依存して増殖する腫瘍融解ウイルス(OBP-301)や, coxsackie and adenovirus receptor(CAR)陰性の腫瘍細胞に感染するファイバー改変型ウイルス(OBP-405)を用い, 骨・軟部肉腫細胞に対する抗腫瘍効果を検討した.   14種類の骨・軟部肉腫細胞株に対してOBP-301の細胞障害活性を検討し, 12種類の細胞株でOBP-301に感受性を認めた. また, OBP-301の細胞障害活性はCARの発現と相関していた. さらに, テロメラーゼ活性の低い細胞に対しても, 5型アデノウイルスの複製に必須のE1Aによりテロメラーゼ活性の増強効果がおこり, 強い抗腫瘍活性を示すことを明らかにした. 次に, 骨肉腫脛骨同所性移植動物モデルを作成しOBP-301を投与したところ, OBP-301投与群では対象群と比べて有意に腫瘍増殖を抑制した. 最後に, OBP-301に感受性を認めなかったCAR陰性細胞株に対してOBP-405を用いて検討し, OBP-405が有効に作用することを確認した.   OBP-301やOBP-405を用いたウイルス療法は, 骨・軟部肉腫に対する新たな治療法となる可能性がある.

    Mechanism of resistance to trastuzumab and molecular sensitization via ADCC activation by exogenous expression of HER2-extracellular domain in human cancer cells

    Get PDF
    Trastuzumab, a humanized antibody targeting HER2, exhibits remarkable therapeutic efficacy against HER2-positive breast and gastric cancers; however, acquired resistance presents a formidable obstacle to long-term tumor responses in the majority of patients. Here, we show the mechanism of resistance to trastuzumab in HER2-positive human cancer cells and explore the molecular sensitization by exogenous expression of HER2-extracellular domain (ECD) in HER2-negative or trastuzumab-resistant human cancer cells. We found that long-term exposure to trastuzumab induced resistance in HER2-positive cancer cells; HER2 expression was downregulated, and antibody-dependent cellular cytotoxicity (ADCC) activity was impaired. We next examined the hypothesis that trastuzumab-resistant cells could be re-sensitized by the transfer of non-functional HER2-ECD. Exogenous HER2-ECD expression induced by the stable transfection of a plasmid vector or infection with a replication-deficient adenovirus vector had no apparent effect on the signaling pathway, but strongly enhanced ADCC activity in low HER2-expressing or trastuzumab-resistant human cancer cells. Our data indicate that restoration of HER2-ECD expression sensitizes HER2-negative or HER2-downregulated human cancer cells to trastuzumab-mediated ADCC, an outcome that has important implications for the treatment of human cancers

    The hTERT Promoter Enhances the Antitumor Activity of an Oncolytic Adenovirus under a Hypoxic Microenvironment

    Get PDF
    Hypoxia is a microenvironmental factor that contributes to the invasion, progression and metastasis of tumor cells. Hypoxic tumor cells often show more resistance to conventional chemoradiotherapy than normoxic tumor cells, suggesting the requirement of novel antitumor therapies to efficiently eliminate the hypoxic tumor cells. We previously generated a tumor-specific replication-competent oncolytic adenovirus (OBP-301: Telomelysin), in which the human telomerase reverse transcriptase (hTERT) promoter drives viral E1 expression. Since the promoter activity of the hTERT gene has been shown to be upregulated by hypoxia, we hypothesized that, under hypoxic conditions, the antitumor effect of OBP-301 with the hTERT promoter would be more efficient than that of the wild-type adenovirus 5 (Ad5). In this study, we investigated the antitumor effects of OBP-301 and Ad5 against human cancer cells under a normoxic (20% oxygen) or a hypoxic (1% oxygen) condition. Hypoxic condition induced nuclear accumulation of the hypoxia-inducible factor-1α and upregulation of hTERT promoter activity in human cancer cells. The cytopathic activity of OBP-301 was significantly higher than that of Ad5 under hypoxic condition. Consistent with their cytopathic activity, the replication of OBP-301 was significantly higher than that of Ad5 under the hypoxic condition. OBP-301-mediated E1A was expressed within hypoxic areas of human xenograft tumors in mice. These results suggest that the cytopathic activity of OBP-301 against hypoxic tumor cells is mediated through hypoxia-mediated activation of the hTERT promoter. Regulation of oncolytic adenoviruses by the hTERT promoter is a promising antitumor strategy, not only for induction of tumor-specific oncolysis, but also for efficient elimination of hypoxic tumor cells
    corecore