6 research outputs found

    Titania Nanoparticle-Stimulated Ultralow Frequency Detection and High-Pass Filter Behavior of a Flexible Piezoelectric Nanogenerator: A Self-Sustaining Energy Harvester for Active Motion Tracking

    No full text
    A significant driving force for the fabrication of IoT-compatible smart health gear integrated with multifunctional sensors is the growing trend in fitness and the overall wellness of the human body. In this work, we present an autonomous motion and activity-sensing device based on the efficacious nucleation of the polar β-phase in an electroactive polymer. Representatively, we investigate the nucleating effect of TiO2 nanoparticles on weight-modulated PVDF-HFP films (PT-5, PT-10, and PT-15) and subsequently prototype a sensing device with the film that demonstrates superior β-phase nucleation. The PT-10 film, with an optimal polar β-phase, shows the highest remnant polarization (2Pr) and energy density of 0.36 μC/cm2 and 22.3 mJ/cm3, respectively, at 60 kV/cm. The films mimic a high pass filter at frequencies above 10 KHz with very low impedance and high ac conductivity values. The frequency-dependent impedance studies reveal an effective interfacial polarization between TiO2 nanoparticles and PVDF-HFP, explicitly observed in the low-frequency region. Consequently, the sensor fabricated with PT-10 as the sensing layer exhibits ultralow frequency detection (25 Hz) resulting from the blood flow muscle oxygenation. The device successfully senses voluntary joint movements of the human body and actively tracks a range of motions, from brisk walking to running. Additionally, through repetitive human finger-tapping motion, the nanogenerator lights up multiple light-emitting diodes in series and charges capacitors of varying magnitudes under 50 s. The real-time human motion sensing and movement tracking modalities of the sensor hold promise in the arena of smart wearables, sports biomechanics, and contact-based medical devices

    Titania Nanoparticle-Stimulated Ultralow Frequency Detection and High-Pass Filter Behavior of a Flexible Piezoelectric Nanogenerator: A Self-Sustaining Energy Harvester for Active Motion Tracking

    No full text
    A significant driving force for the fabrication of IoT-compatible smart health gear integrated with multifunctional sensors is the growing trend in fitness and the overall wellness of the human body. In this work, we present an autonomous motion and activity-sensing device based on the efficacious nucleation of the polar β-phase in an electroactive polymer. Representatively, we investigate the nucleating effect of TiO2 nanoparticles on weight-modulated PVDF-HFP films (PT-5, PT-10, and PT-15) and subsequently prototype a sensing device with the film that demonstrates superior β-phase nucleation. The PT-10 film, with an optimal polar β-phase, shows the highest remnant polarization (2Pr) and energy density of 0.36 μC/cm2 and 22.3 mJ/cm3, respectively, at 60 kV/cm. The films mimic a high pass filter at frequencies above 10 KHz with very low impedance and high ac conductivity values. The frequency-dependent impedance studies reveal an effective interfacial polarization between TiO2 nanoparticles and PVDF-HFP, explicitly observed in the low-frequency region. Consequently, the sensor fabricated with PT-10 as the sensing layer exhibits ultralow frequency detection (25 Hz) resulting from the blood flow muscle oxygenation. The device successfully senses voluntary joint movements of the human body and actively tracks a range of motions, from brisk walking to running. Additionally, through repetitive human finger-tapping motion, the nanogenerator lights up multiple light-emitting diodes in series and charges capacitors of varying magnitudes under 50 s. The real-time human motion sensing and movement tracking modalities of the sensor hold promise in the arena of smart wearables, sports biomechanics, and contact-based medical devices

    Reversible Lithium Storage in Manganese 1,3,5-Benzenetricarboxylate Metal–Organic Framework with High Capacity and Rate Performance

    No full text
    Metal organic frameworks (MOFs) with diverse structural chemistry are being projected as futuristic electrode materials for Li-ion batteries. In this work, we report synthesis of Mn-1,3,5-benzenetricarboxylate MOF by a simple solvothermal method and its application as an anode material for the first time. Scanning electron microscopy of the synthesized MOF shows a bar shaped morphology where these bars, about 1 μm wide and of varied lengths between 2 and 20 μm, are made of porous sheets containing mesoporous walls and macroporous channels. The MOF anode, when examined in the potential window of 0.01–2.0 V versus Li/Li<sup>+</sup>, shows high specific capacities of 694 and 400 mAh g<sup>–1</sup> at current densities of 0.1 and 1.0 A g<sup>–1</sup> along with good cyclability, retention of capacity, and sustenance of the MOF network. Ex situ X-ray diffraction, Fourier transform infrared, and X-ray photoelectron spectroscopy studies on the electrode material at different states of charge suggest that the usual conversion reaction for Li storage might not be applicable in this case. Conjugated carboxylates being weakly electron withdrawing ligands with a stronger π–π interaction, a probable alternative Li storage mechanism has been proposed that involves the organic moiety. The present results show promise for applying Mn-1,3,5-benzenetricarboxylate MOF as high performance <2 V anode

    Phase Evolution and Growth of Iron Oxide Nanoparticles: Effect of Hydrazine Addition During Sonication

    No full text
    The phase evolution of iron oxide was monitored by carefully controlling the addition of hydrazine monohydrate (N<sub>2</sub>H<sub>4</sub>·H<sub>2</sub>O) during ultrasonication. The manner in which hydrazine was added affected the hydrolysis of iron­(III) nitrate resulting in two different phases of iron oxides such as maghemite (γ-Fe<sub>2</sub>O<sub>3</sub>) or goethite (α-FeOOH) as the major products. The formation of ferric hydroxide and Fe<sup>2+</sup> during the addition of hydrazine monohydrate to iron salt solution at low pH was confirmed by structure analysis and 1,10-phenanthroline tests, respectively. Synchrotron X-ray diffraction analysis confirmed the formation of spherical maghemite (γ-Fe<sub>2</sub>O<sub>3</sub>) during the dropwise addition of hydrazine, whereas the formation of rod-shaped goethite (α-FeOOH) was confirmed by the instantaneous addition of hydrazine. Through these experiments, we were able to unequivocally establish the importance of hydrazine addition in controlling the phase formation and growth of iron oxide nanoparticles during sonication

    Dynamic Structural Evolution and Dual Emission Behavior in Hybrid Organic Lead Bromide Perovskites

    No full text
    The optoelectronic properties of organic lead halide perovskites (OLHPs) strongly depend on their underlying crystal symmetry and dynamics. Here, we exploit temperature-dependent synchrotron powder X-ray diffraction and temperature-dependent photoluminescence to investigate how the subtle structural changes happening in the pure and mixed A-site cation MA1–xFAxPbBr3 (x = 0, 0.5, and 1) systems influences their optoelectronic properties. Diffraction investigations reveal a cubic structure at high temperatures and tetragonal and orthorhombic structures with octahedral distortion at low temperatures. Steady state photoluminescence and time correlated single photon counting study reveals that the dual emission behavior of these OLHPs is due to the direct-indirect band formation. In the orthorhombic phase of MAPbBr3, the indirect band is dominated by self-trapped exciton (STE) emission due to the higher-order lattice distortions of PbBr6 octahedra. Our findings provide a comprehensive explanation of the dual emission behavior of OLHPs while also providing a rationale for previous experimental observations

    Defects in Chemically Synthesized and Thermally Processed ZnO Nanorods: Implications for Active Layer Properties in Dye-Sensitized Solar Cells

    No full text
    We have carried out the effect of post annealing temperatures on the performance of solution-grown ZnO rods as photoanodes in dye-sensitized solar cells. Keeping our basic objective of exploring the effect of native defects on the performance of DSSC, we have synthesized ZnO rods having length in the range of 2–5 μm by a modified sonication-induced precipitation technique. We performed extensive characterization on the samples annealed at various temperatures and confirmed that annealing at 300 °C results in ZnO rods with minimum native defects that have been identified as doubly ionized oxygen vacancies. The electron paramagnetic resonance measurements on the samples, on the other hand, confirmed the presence of shallow donors in the low temperature annealed samples. We also carried out electrochemical impedance measurements to understand the transport properties at different interfaces in the solar cell assembly. We could conclude that solution-processed ZnO rods annealed at 300 °C are better suited for fabricating DSSC with improved efficiency (1.57%), current density (5.11 mA/cm<sup>2</sup>), and fill factor (45.29%). On the basis of our results, we were able to establish a close connection between the defects in the metal oxide electron transporting nano system and the DSSC performance
    corecore