518 research outputs found

    Exciton mediated one phonon resonant Raman scattering from one-dimensional systems

    Full text link
    We use the Kramers-Heisenberg approach to derive a general expression for the resonant Raman scattering cross section from a one-dimensional (1D) system explicitly accounting for excitonic effects. The result should prove useful for analyzing the Raman resonance excitation profile lineshapes for a variety of 1D systems including carbon nanotubes and semiconductor quantum wires. We apply this formalism to a simple 1D model system to illustrate the similarities and differences between the free electron and correlated electron-hole theories.Comment: 10 pages, 6 figure

    Chirality dependence of the radial breathing phonon mode density in single wall carbon nanotubes

    Full text link
    A mass and spring model is used to calculate the phonon mode dispersion for single wall carbon nanotubes (SWNTs) of arbitrary chirality. The calculated dispersions are used to determine the chirality dependence of the radial breathing phonon mode (RBM) density. Van Hove singularities, usually discussed in the context of the single particle electronic excitation spectrum, are found in the RBM density of states with distinct qualitative differences for zig zag, armchair and chiral SWNTs. The influence the phonon mode density has on the two phonon resonant Raman scattering cross-section is discussed.Comment: 6 pages, 2 figures, submitted to Phys. Rev.

    Tunable Resonant Raman Scattering from Singly Resonant Single Wall Carbon Nanotubes

    Full text link
    We perform tunable resonant Raman scattering on 17 semiconducting and 7 metallic singly resonant single wall carbon nanotubes. The measured scattering cross-section as a function laser energy provides information about a tube's electronic structure, the lifetime of intermediate states involved in the scattering process and also energies of zone center optical phonons. Recording the scattered Raman signal as a function of tube location in the microscope focal plane allows us to construct two-dimensional spatial maps of singly resonant tubes. We also describe a spectral nanoscale artifact we have coined the "nano-slit effect"

    100 GHz resonant cavity enhanced Schottky photodiodes

    Get PDF
    Cataloged from PDF version of article.Resonant cavity enhanced (RCE) photodiodes are promising candidates for applications in optical communications and interconnects where ultrafast high-efficiency detection is desirable. We have designed and fabricated RCE Schottky photodiodes in the (Al, In) GaAs material system for 900-nm wavelength. The observed temporal response with 10-ps pulsewidth was limited by the measurement setup and a conservative estimation of the bandwidth corresponds to more than 100 GHz. A direct comparison of RCE versus conventional detector performance was performed by high speed measurements under optical excitation at resonant wavelength (895 nm) and at 840 nm where the device functions as a single-pass conventional photodiode. A more than two-fold bandwidth enhancement with the RCE detection scheme was demonstrated

    Design and Optimization of High-Speed Resonant Cavity Enhanced Schottky Photodiodes

    Get PDF
    Cataloged from PDF version of article.Resonant cavity enhanced (RCE) photodiodes (PD’s) are promising candidates for applications in optical communications and interconnects where high-speed high-efficiency photodetection is desirable. In RCE structures, the electrical properties of the photodetector remain mostly unchanged; however, the presence of the microcavity causes wavelength selectivity accompanied by a drastic increase of the optical field at the resonant wavelengths. The enhanced optical field allows to maintain a high efficiency for faster transit-time limited PD’s with thinner absorption regions. The combination of an RCE detection scheme with Schottky PD’s allows for the fabrication of high-performance photodetectors with relatively simple material structures and fabrication processes. In top-illuminated RCE Schottky PD’s, a semitransparent Schottky contact can also serve as the top reflector of the resonant cavity. We present theoretical and experimental results on spectral and high-speed properties of GaAs–AlAs–InGaAs RCE Schottky PD’s designed for 900-nm wavelength

    High bandwidth-efficiency solar-blind AlGaN Schottky photodiodes with low dark current

    Get PDF
    Cataloged from PDF version of article.Al0.38Ga0.62N/GaN heterojunction solar-blind Schottky photodetectors with low dark current, high responsivity, and fast pulse response were demonstrated. A five-step microwave compatible fabrication process was utilized to fabricate the devices. The solarblind detectors displayed extremely low dark current values: 30lm diameter devices exhibited leakage current below 3 fA under reverse bias up to 12V. True solar-blind operation was ensured with a sharp cut-off around 266 nm. Peak responsivity of 147mA/W was measured at 256 nm under 20 V reverse bias. A visible rejection more than 4 orders of magnitude was achieved. The thermally-limited detectivity of the devices was calculated as 1.8 · 1013 cmHz1/2W 1 . Temporal pulse response measurements of the solar-blind detectors resulted in fast pulses with high 3-dB bandwidths. The best devices had 53 ps pulse-width and 4.1GHz bandwidth. A bandwidth-efficiency product of 2.9GHz was achieved with the AlGaN Schottky photodiodes. (C) 2004 Elsevier Ltd. All rights reserve

    Digital detection of exosomes by interferometric imaging

    Get PDF
    Exosomes, which are membranous nanovesicles, are actively released by cells and have been attributed to roles in cell-cell communication, cancer metastasis, and early disease diagnostics. The small size (30–100 nm) along with low refractive index contrast of exosomes makes direct characterization and phenotypical classification very difficult. In this work we present a method based on Single Particle Interferometric Reflectance Imaging Sensor (SP-IRIS) that allows multiplexed phenotyping and digital counting of various populations of individual exosomes (>50 nm) captured on a microarray-based solid phase chip. We demonstrate these characterization concepts using purified exosomes from a HEK 293 cell culture. As a demonstration of clinical utility, we characterize exosomes directly from human cerebrospinal fluid (hCSF). Our interferometric imaging method could capture, from a very small hCSF volume (20 uL), nanoparticles that have a size compatible with exosomes, using antibodies directed against tetraspanins. With this unprecedented capability, we foresee revolutionary implications in the clinical field with improvements in diagnosis and stratification of patients affected by different disorders.This work was supported by Regione Lombardia and Fondazione Cariplo through POR-FESR, project MINER (ID 46875467); Italian Ministry of Health, Ricerca Corrente. This work was partially supported by The Scientific and Technological Research Council of Turkey (grant #113E643). (Regione Lombardia; 46875467 - Fondazione Cariplo through POR-FESR, project MINER; Italian Ministry of Health, Ricerca Corrente; 113E643 - Scientific and Technological Research Council of Turkey)Published versio

    High bandwidth-efficiency resonant cavity enhanced Schottky photodiodes for 800-850 nm wavelength operation

    Get PDF
    Cataloged from PDF version of article.High-speed resonant cavity enhanced Schottky photodiodes operating in 800-850 nm wavelength region are demonstrated. The devices are fabricated in the AlGaAs/GaAs material system. The Schottky contact is a semitransparent Au film which also serves as the top reflector of the Fabry-Perot cavity. The detectors exhibit a peak quantum efficiency of eta = 0.5 at lambda = 827 nm wavelength and a 3 dB bandwidth of more than 50 GHz resulting in a bandwidth-efficiency product of more than 25 GHz. (C) 1998 American Institute of Physic
    • …
    corecore