3 research outputs found

    Microengineered Hollow Graphene Tube Systems Generate Conductive Hydrogels with Extremely Low Filler Concentration

    Get PDF
    The fabrication of electrically conductive hydrogels is challenging as the introduction of an electrically conductive filler often changes mechanical hydrogel matrix properties. Here, we present an approach for the preparation of hydrogel composites with outstanding electrical conductivity at extremely low filler loadings (0.34 S m-1, 0.16 vol %). Exfoliated graphene and polyacrylamide are microengineered to 3D composites such that conductive graphene pathways pervade the hydrogel matrix similar to an artificial nervous system. This makes it possible to combine both the exceptional conductivity of exfoliated graphene and the adaptable mechanical properties of polyacrylamide. The demonstrated approach is highly versatile regarding porosity, filler material, as well as hydrogel system. The important difference to other approaches is that we keep the original properties of the matrix, while ensuring conductivity through graphene-coated microchannels. This novel approach of generating conductive hydrogels is very promising, with particular applications in the fields of bioelectronics and biohybrid robotics

    Magnetic Bucket Brigade Transport Networks for Cell Transport

    Get PDF
    Controlled transport of biological cells in biomedical applications such as sorting, cell sequencing, and assembly of multicellular structures is a technological challenge. Research areas such as drug delivery or tissue engineering can benefit from precise cell location resulting in faster response rates or more complex tissue structures. Using computational methods, different soft magnetic elements with curved edges are designed to form a transport network, enabling transport and all functionalities for the manipulation of microbeads and cells on surfaces by rotational magnetic fields. Building blocks with bimodal functionalities due to segments of differently curved edges permit breakpoints as well as switchable transport via splitting and combining elements. Connecting the elements, networked paths are realized which allow variable movement patterns of magnetic carriers and cells. The direction of magnetic field rotation is altered to direct the beads and cells into different transport lines, and the exact timing is not critical. The networks are used to achieve deterministic movement of microbeads and cells with minimal intervention. Programmed transport over one millimeter with cell transport velocities of several micrometers per s is demonstrated. Based on scalable microchip technology, the networks can be integrated with CMOS-compatible materials and straightforwardly combined with sensing and diagnostic structures
    corecore