7,461 research outputs found

    Molecular Cloud Structure in the Magellanic Clouds: Effect of Metallicity

    Get PDF
    The chemical structure of neutral clouds in low metallicity environments is examined with particular emphasis on the H to H_2 and C+ to CO transitions. We observed near-IR H_2 lines and the CO J=1-0 line from 30 Doradus and N159/N160 in the Large Magellanic Cloud and from DEM S 16, DEM S 37, and LI-SMC 36 in the Small Magellanic Cloud. We find that the H_2 emission is UV-excited and that (weak) CO emission always exists (in our surveyed regions) toward positions where H_2 and [CII] emission have been detected. Using a PDR code and a radiative transfer code, we simulate the emission of line radiation from spherical clouds and from large planar clouds. Because the [CII] emission and H_2 emission arise on the surface of the cloud and the lines are optically thin, these lines are not affected by changes in the relative sizes of the neutral cloud and the CO bearing core, while the optically thick CO emission can be strongly affected. The sizes of clouds are estimated by measuring the deviation of CO emission strength from that predicted by a planar cloud model of a given size. The average cloud column density and therefore size increases as the metallicity decreases. Our result agrees with the photoionization regulated star formation theory by Mc Kee (1989).Comment: 45 Pages including 15 figures. To be published in the ApJ May 10, 1998 issue, Vol. 49

    Human immunodeficiency virus rebound after suppression to < 400 copies/mL during initial highly active antiretroviral therapy regimens, according to prior nucleoside experience and duration of suppression

    Get PDF
    This study evaluated 1433 human immunodeficiency virus (HIV)-infected patients starting highly active antiretroviral therapy (HAART), 409 (28%) of whom had prior nucleoside experience and achieved an HIV load of <400 copies/mL by 24 weeks of therapy. Three hundred seven patients experienced virus rebound during a total of 2773.3 person-years of follow-up. There was a higher rate of virus rebound among the patients with pre-HAART nucleoside experience (relative hazard [RH], 2.86; 95% confidence interval, 2.22-3.84; P < .0001) and a decreasing rate of virus rebound with increasing duration of virus suppression (i.e., time since achieving a virus load of <400 HIV RNA copies/mL) among both the nucleoside-experienced and naive patients (P < .0001), but the difference between the groups persisted into the third year of follow-up (P = .0007). Even patients who had experienced <2 months of nucleoside therapy before beginning HAART had an increased risk of virus rebound (RH, 1.95; P = .009). It appears that only a small period of pre-HAART nucleoside therapy is sufficient to confer a disadvantage, in terms of risk of virus rebound, that persists for several years
    corecore