8 research outputs found

    Understanding human gut diseases at single-cell resolution

    Get PDF
    Our understanding of gut functioning and pathophysiology has grown considerably in the past decades, and advancing technologies enable us to deepen this understanding. Single-cell RNA sequencing (scRNA-seq) has opened a new realm of cellular diversity and transcriptional variation in the human gut at a high, single-cell resolution. ScRNA-seq has pushed the science of the digestive system forward by characterizing the function of distinct cell types within complex intestinal cellular environments, by illuminating the heterogeneity within specific cell populations, and by identifying novel cell types in the human gut that could contribute to a variety of intestinal diseases. In this review, we highlight recent discoveries made with scRNA-seq that significantly advance our understanding of the human gut both in health and across the spectrum of gut diseases, including inflammatory bowel disease, colorectal carcinoma and celiac disease

    Donor genetic variants as risk factors for thrombosis after liver transplantation:A genome-wide association study

    Get PDF
    Thrombosis after liver transplantation substantially impairs graft‐ and patient survival. Inevitably, heritable disorders of coagulation originating in the donor liver are transmitted by transplantation. We hypothesized that genetic variants in donor thrombophilia genes are associated with increased risk of posttransplant thrombosis. We genotyped 775 donors for adult recipients and 310 donors for pediatric recipients transplanted between 1993 and 2018. We determined the association between known donor thrombophilia gene variants and recipient posttransplant thrombosis. In addition, we performed a genome‐wide association study (GWAS) and meta‐analyzed 1085 liver transplantations. In our donor cohort, known thrombosis risk loci were not associated with posttransplant thrombosis, suggesting that it is unnecessary to exclude liver donors based on thrombosis‐susceptible polymorphisms. By performing a meta‐GWAS from children and adults, we identified 280 variants in 55 loci at suggestive genetic significance threshold. Downstream prioritization strategies identified biologically plausible candidate genes, among which were AK4 (rs11208611‐T, p = 4.22 × 10(−05)) which encodes a protein that regulates cellular ATP levels and concurrent activation of AMPK and mTOR, and RGS5 (rs10917696‐C, p = 2.62 × 10(−05)) which is involved in vascular development. We provide evidence that common genetic variants in the donor, but not previously known thrombophilia‐related variants, are associated with increased risk of thrombosis after liver transplantation

    The genetic background of inflammatory bowel disease:From correlation to causality

    No full text
    Recent studies have greatly improved our insight into the genetic background of inflammatory bowel disease (IBD). New high-throughput technologies and large-scale international collaborations have contributed to the identification of 200 independent genetic risk loci for IBD. However, in most of these loci, it is unclear which gene conveys the risk for IBD. More importantly, it is unclear which variant within or near the gene is causal to the disease. Using targeted GWAS, imputation, resequencing of risk loci, and in silico fine-mapping of densely typed loci, several causal variants have been identified in IBD risk genes, and various pathological pathways have been uncovered. Current research in the field of IBD focuses on the effect of these causal variants on gene expression and protein function. However, more elements than only the genome must be taken into account to disentangle the multifactorial pathology of IBD. The genetic risk loci identified to date only explain a small part of genetic variance in disease risk. Currently, large multi-omics studies are incorporating factors ranging from the gut microbiome to the environment. In this review, we present the progress that has been made in IBD genetic research and stress the importance of studying causality to increase our understanding of the pathogenesis of IBD. We highlight important causal genetic variants in the candidate genes NOD2, ATG16L1, IRGM, IL23R, CARD9, RNF186, and PRDM1. We describe their downstream effects on protein function and their direct effects on the gut immune system. Furthermore, we discuss the future role of genetics in unravelling disease mechanisms in IBD. Copyright (C) 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd

    Inflammation status modulates the effect of host genetic variation on intestinal gene expression in inflammatory bowel disease

    Get PDF
    More than 240 genetic risk loci have been associated with inflammatory bowel disease (IBD), but little is known about how they contribute to disease development in involved tissue. Here, we hypothesized that host genetic variation affects gene expression in an inflammation-dependent way, and investigated 299 snap-frozen intestinal biopsies from inflamed and non-inflamed mucosa from 171 IBD patients. RNA-sequencing was performed, and genotypes were determined using whole exome sequencing and genome wide genotyping. In total, 28,746 genes and 6,894,979 SNPs were included. Linear mixed models identified 8,881 independent intestinal cis-expression quantitative trait loci (cis-eQTLs) (FDR <0.05) and interaction analysis revealed 190 inflammation-dependent intestinal cis-eQTLs (FDR <0.05), including known IBD-risk genes and genes encoding immune-cell receptors and antibodies. The inflammation-dependent cis-eQTL SNPs (eSNPs) mainly interact with prevalence of immune cell types. Inflammation-dependent intestinal cis-eQTLs reveal genetic susceptibility under inflammatory conditions that can help identify the cell types involved in and the pathways underlying inflammation, knowledge that may guide future drug development and profile patients for precision medicine in IBD. Inflammatory bowel diseases are heterogeneous, and little is known about how underlying genetic variation can affect their development. Here, the authors report that intestinal inflammation modulates the effect of host genetics on the gut mucosal expression of 190 genes in the context of inflammatory bowel diseases.Peer reviewe
    corecore