13 research outputs found

    Molecular Cause and Functional Impact of Altered Synaptic Lipid Signaling Due to a \u3cem\u3eprg-1\u3c/em\u3e Gene SNP

    Get PDF
    Loss of plasticity‐related gene 1 (PRG‐1), which regulates synaptic phospholipid signaling, leads to hyperexcitability via increased glutamate release altering excitation/inhibition (E/I) balance in cortical networks. A recently reported SNP in prg‐1 (R345T/mutPRG‐1) affects ~5 million European and US citizens in a monoallelic variant. Our studies show that this mutation leads to a loss‐of‐PRG‐1 function at the synapse due to its inability to control lysophosphatidic acid (LPA) levels via a cellular uptake mechanism which appears to depend on proper glycosylation altered by this SNP. PRG‐1+/− mice, which are animal correlates of human PRG‐1+/mut carriers, showed an altered cortical network function and stress‐related behavioral changes indicating altered resilience against psychiatric disorders. These could be reversed by modulation of phospholipid signaling via pharmacological inhibition of the LPA‐synthesizing molecule autotaxin. In line, EEG recordings in a human population‐based cohort revealed an E/I balance shift in monoallelic mutPRG‐1 carriers and an impaired sensory gating, which is regarded as an endophenotype of stress‐related mental disorders. Intervention into bioactive lipid signaling is thus a promising strategy to interfere with glutamate‐dependent symptoms in psychiatric diseases

    Extracellular glutamate-GABA balance in the developing neocortex

    No full text
    It has been shown in the study that glutamate transporters (EAAT) are capable to modulate GABA transports (GAT). Here we also report that DL-TBOA, a non-transportable glutamate uptake blocker, eliminates GAT-mediated GABA release, while D-aspartate, an EAAT substrate, does not block the latter. The strength or even the operating mode of GABA uptake/release could be influenced by the work of EAATs. Considering the interaction between EAATs and GATs we can conclude that ambient glutamate and GABA levels are mutually dependent. The EAAT-GAT crosstalk observed in this work is mediated by EAAT1 and GAT-2/3. Since both transporters are Na+ dependent and mainly glial, next we investigated the role of [Na+]i in astrocytic-mediated glutamate uptake. We tested whether [Na+]i changes affect paired-pulse plasticity of STCs recorded from cortical layer 2/3 astrocytes. We report that an elevation of [Na+]i induced either by using a high [Na+]i intrapipette solution or by application of GABA slows STCs kinetics and decrease paired-pulse facilitation (PPF) of STCs at short inter-stimulus intervals. Moreover, GAT inhibitors decrease PPF of STCs under control conditions, suggesting that endogenous GABA operating via GATs influences EAAT-mediated transpor

    Dentate gyrus astrocytes exhibit layer-specific molecular, morphological and physiological features

    No full text
    Neuronal heterogeneity has been established as a pillar of higher central nervous system function, but glial heterogeneity and its implications for neural circuit function are poorly understood. Here we show that the adult mouse dentate gyrus (DG) of the hippocampus is populated by molecularly distinct astrocyte subtypes that are associated with distinct DG layers. Astrocytes localized to different DG compartments also exhibit subtype-specific morphologies. Physiologically, astrocytes in upper DG layers form large syncytia, while those in lower DG compartments form smaller networks. Astrocyte subtypes differentially express glutamate transporters, which is associated with different amplitudes of glutamate transporter-mediated currents. Key molecular and morphological features of astrocyte diversity in the mice DG are conserved in humans. This adds another layer of complexity to our understanding of brain network composition and function, which will be crucial for further studies on astrocytes in health and disease

    Dentate gyrus astrocytes exhibit layer-specific molecular, morphological and physiological features

    No full text
    Neuronal heterogeneity has been established as a pillar of higher central nervous system function, but glial heterogeneity and its implications for neural circuit function are poorly understood. Here we show that the adult mouse dentate gyrus (DG) of the hippocampus is populated by molecularly distinct astrocyte subtypes that are associated with distinct DG layers. Astrocytes localized to different DG compartments also exhibit subtype-specific morphologies. Physiologically, astrocytes in upper DG layers form large syncytia, while those in lower DG compartments form smaller networks. Astrocyte subtypes differentially express glutamate transporters, which is associated with different amplitudes of glutamate transporter-mediated currents. Key molecular and morphological features of astrocyte diversity in the mice DG are conserved in humans. This adds another layer of complexity to our understanding of brain network composition and function, which will be crucial for further studies on astrocytes in health and disease

    Estimation of ambient GABA levels in layer I of the mouse neonatal cortex in brain slices

    No full text
    GABAergic synapses on Cajal–Retzius neurons in layer I of the murine neocortex experience GABAB receptor (GABABR)-mediated tonic inhibition. Extracellular GABA concentration ([GABA]o) that determines the strength of GABABR-mediated inhibition is controlled by GABA transporters (GATs). In this study, we hypothesized that the strength ofpresynaptic GABABR activation reflects [GABA]o in the vicinity of synaptic contacts. Slices obtained from two age groups were used, namely postnatal days (P)2–3 and P5–7. GABAergic postsynaptic currents (IPSCs) were recorded using the whole-cell patch-clamp technique. Minimal electrical stimulation in layer I was applied to elicit evoked IPSCs (eIPSCs) using a paired-pulse protocol. Three parameters were selected for comparison: the mean eIPSC amplitude, paired-pulse ratio, and failure rate. When GAT-1 and GAT-2/3 were blocked by NO-711 (10 ÎŒm) and SNAP-5114 (40 ÎŒm), respectively, no tonic GABABR-mediated inhibition was observed. In order to restore the control levels of GABABR-mediated inhibition, 250 and 125 nm exogenous GABA was required at P2–3 and P5–7, respectively. Addition of 3-mercaptopropionic acid, a glutamate decarboxylase inhibitor, did not significantly change the obtained values arguing against the suggestion that a mechanism different from GATs contributes to [GABA]o control. We conclude that juxtasynaptic [GABA]o is higher (about 250 nm) at P2–3 than at P5–7 (about 125 nm). As both radial cell migration and corticogenesis in general are strongly dependent on [GABA]o and the formation of the last layer 2/3 is finished by P4 in rodents, the observed [GABA]o reduction in layer I might reflect this crucial event in the cortical development

    Molecular cause and functional impact of altered synaptic lipid signaling due to a prg‐1 gene SNP

    Get PDF
    Loss of plasticity-related gene 1 (PRG-1), which regulates synaptic phospholipid signaling, leads to hyperexcitability via increased glutamate release altering excitation/inhibition (E/I) balance in cortical networks. A recently reported SNP in prg-1 (R345T/mutPRG-1) affects ~5 million European and US citizens in a monoallelic variant. Our studies show that this mutation leads to a loss-of-PRG-1 function at the synapse due to its inability to control lysophosphatidic acid (LPA) levels via a cellular uptake mechanism which appears to depend on proper glycosylation altered by this SNP. PRG-1(+/-) mice, which are animal correlates of human PRG-1(+/mut) carriers, showed an altered cortical network function and stress-related behavioral changes indicating altered resilience against psychiatric disorders. These could be reversed by modulation of phospholipid signaling via pharmacological inhibition of the LPA-synthesizing molecule autotaxin. In line, EEG recordings in a human population-based cohort revealed an E/I balance shift in monoallelic mutPRG-1 carriers and an impaired sensory gating, which is regarded as an endophenotype of stress-related mental disorders. Intervention into bioactive lipid signaling is thus a promising strategy to interfere with glutamate-dependent symptoms in psychiatric diseases
    corecore