8 research outputs found

    Semi-Supervised Imitation Learning of Team Policies from Suboptimal Demonstrations

    Full text link
    We present Bayesian Team Imitation Learner (BTIL), an imitation learning algorithm to model the behavior of teams performing sequential tasks in Markovian domains. In contrast to existing multi-agent imitation learning techniques, BTIL explicitly models and infers the time-varying mental states of team members, thereby enabling learning of decentralized team policies from demonstrations of suboptimal teamwork. Further, to allow for sample- and label-efficient policy learning from small datasets, BTIL employs a Bayesian perspective and is capable of learning from semi-supervised demonstrations. We demonstrate and benchmark the performance of BTIL on synthetic multi-agent tasks as well as a novel dataset of human-agent teamwork. Our experiments show that BTIL can successfully learn team policies from demonstrations despite the influence of team members' (time-varying and potentially misaligned) mental states on their behavior.Comment: Extended version of an identically-titled paper accepted at IJCAI 202

    Learning Models of Sequential Decision-Making without Complete State Specification using Bayesian Nonparametric Inference and Active Querying

    Get PDF
    Learning models of decision-making behavior during sequential tasks is useful across a variety of applications, including human-machine interaction. In this paper, we present an approach to learning such models within Markovian domains based on observing and querying a decision-making agent. In contrast to classical approaches to behavior learning, we do not assume complete knowledge of the state features that impact an agent's decisions. Using tools from Bayesian nonparametric inference and time series of agents decisions, we first provide an inference algorithm to identify the presence of any unmodeled state features that impact decision making, as well as likely candidate models. In order to identify the best model among these candidates, we next provide an active querying approach that resolves model ambiguity by querying the decision maker. Results from our evaluations demonstrate that, using the proposed algorithms, an observer can identify the presence of latent state features, recover their dynamics, and estimate their impact on decisions during sequential tasks

    When Humans Aren't Optimal: Robots that Collaborate with Risk-Aware Humans

    Full text link
    In order to collaborate safely and efficiently, robots need to anticipate how their human partners will behave. Some of today's robots model humans as if they were also robots, and assume users are always optimal. Other robots account for human limitations, and relax this assumption so that the human is noisily rational. Both of these models make sense when the human receives deterministic rewards: i.e., gaining either 100or100 or 130 with certainty. But in real world scenarios, rewards are rarely deterministic. Instead, we must make choices subject to risk and uncertainty--and in these settings, humans exhibit a cognitive bias towards suboptimal behavior. For example, when deciding between gaining 100withcertaintyor100 with certainty or 130 only 80% of the time, people tend to make the risk-averse choice--even though it leads to a lower expected gain! In this paper, we adopt a well-known Risk-Aware human model from behavioral economics called Cumulative Prospect Theory and enable robots to leverage this model during human-robot interaction (HRI). In our user studies, we offer supporting evidence that the Risk-Aware model more accurately predicts suboptimal human behavior. We find that this increased modeling accuracy results in safer and more efficient human-robot collaboration. Overall, we extend existing rational human models so that collaborative robots can anticipate and plan around suboptimal human behavior during HRI.Comment: ACM/IEEE International Conference on Human-Robot Interactio

    Towards an AI Coach to Infer Team Mental Model Alignment in Healthcare

    No full text
    Shared mental models are critical to team success; however, in practice, team members may have misaligned models due to a variety of factors. In safety-critical domains (e.g., aviation, healthcare), lack of shared mental models can lead to preventable errors and harm. Towards the goal of mitigating such preventable errors, here, we present a Bayesian approach to infer misalignment in team members' mental models during complex healthcare task execution. As an exemplary application, we demonstrate our approach using two simulated team-based scenarios, derived from actual teamwork in cardiac surgery. In these simulated experiments, our approach inferred model misalignment with over 75% recall, thereby providing a building block for enabling computer-assisted interventions to augment human cognition in the operating room and improve teamwork

    Human-Aware Robotic Assistant for Collaborative Assembly: Integrating Human Motion Prediction With Planning in Time

    No full text
    Introducing mobile robots into the collaborative assembly process poses unique challenges for ensuring efficient and safe human-robot interaction. Current human-robot work cells require the robot to cease operating completely whenever a human enters a shared region of the given cell, and the robots do not explicitly model or adapt to the behavior of the human. In this work, we present a human-aware robotic system with single-axis mobility that incorporates both predictions of human motion and planning in time to execute efficient and safe motions during automotive final assembly. We evaluate our system in simulation against three alternative methods, including a baseline approach emulating the behavior of standard safety systems in factories today. We also assess the system within a factory test environment. Through both live demonstration and results from simulated experiments, we show that our approach produces statistically significant improvements in quantitative measures of safety and fluency of interaction. Keywords: Physical Human-Robot Interaction, Collaborative Robots, Assembl

    Reports of the AAAI 2017 Fall Symposium Series

    Get PDF
    The AAAI 2017 Fall Symposium Series was held Thursday through Saturday, November 9–11, at the Westin Arlington Gateway in Arlington, Virginia, adjacent to Washington, DC. The titles of the six symposia were Artificial Intelligence for Human-Robot Interaction; Cognitive Assistance in Government and Public Sector Applications; Deep Models and Artificial Intelligence for Military Applications: Potentials, Theories, Practices, Tools, and Risks; Human-Agent Groups: Studies, Algorithms, and Challenges; Natural Communication for Human-Robot Collaboration; and A Standard Model of the Mind. The highlights of each symposium (except the Natural Communication for Human-Robot Collaboration symposium, whose organizers did not submit a report) are presented in this report

    Reports of the AAAI 2017 fall symposium series

    Get PDF
    The AAAI 2017 Fall Symposium Series was held Thursday through Saturday, November 9–11, at the Westin Arlington Gateway in Arlington, Virginia, adjacent to Washington, DC. The titles of the six symposia were Artificial Intelligence for Human-Robot Interaction; Cognitive Assistance in Government and Public Sector Applications; Deep Models and Artificial Intelligence for Military Applications: Potentials, Theories, Practices, Tools, and Risks; Human-Agent Groups: Studies, Algorithms, and Challenges; Natural Communication for Human-Robot Collaboration; and A Standard Model of the Mind. The highlights of each symposium (except the Natural Communication for Human-Robot Collaboration symposium, whose organizers did not submit a report) are presented in this report
    corecore