39 research outputs found
Simulation of Cavitation Instabilities in Inducers
The cavitating performance of a sub-scale configuration of the SSME low pressure fuel pump (LPFP) has been simulated at off-design flow conditions where a back-flow vortex is generated at the leading edge. The numerical simulations have been compared with measured experimental data both for velocity profiles upstream of the inducer as well dynamic pressure traces on the shroud at the leading edge. Velocity profiles in the back-flow vortex for flow rates down to 70 percent of design were quantified; the swirl velocity comparisons were good while the axial velocity profile were reasonable but slightly over predicted the core velocity. Dynamic cavitating performance was modeled at a moderate Nss number of 20000 for 90 percent of design flow coefficient where rotational cavitation modes are present The source of this instability resulted from the interaction of the cavity with the neighboring blade leading to the detachment of the cavity that rotates relative to the blade and generates an asymmetric cavity pattern. The asymmetrical cavities generate a large radial load on the shaft which rotates at the fundamental mode of the rotational cavitation. For the sub-scale configuration the radial force amplitude was 186 lb-f which gives a non-dimensional force factor of 0.0116. Spectral analyses of the dynamic pressure traces on the shroud, at the leading edge plane, were compared with experimental measurements. The fundamental rotational cavitation mode was observed to be 125 Hz which is approximately 1.29 N (rotational frequency is 96. Hz); both the frequency and relative amplitude compared well with the unsteady measurements. In addition to the fundamental rotation cavitation mode the data shows substantial energy with multiple peaks in the 5 -7.5 N range. This range was reasonably represented in the numerical results although the spectrum was not as rich. A helical pressure wave at the fundamental mode is found to propagate upstream and a potential for interaction with structural elements was identified.http://deepblue.lib.umich.edu/bitstream/2027.42/84299/1/CAV2009-final122.pd
Simulations of a Liquid Hydrogen Inducer at Low-Flow Off-Design Flow Conditions
The ability to accurately model details of inlet back flow for inducers operating a t low-flow, off-design conditions is evaluated. A sub-scale version of a three-bladed liquid hydrogen inducer tested in water with detailed velocity and pressure measurements is used as a numerical test bed. Under low-flow, off-design conditions the length of the separation zone as well as the swirl velocity magnitude was under predicted with a standard k-E model. When the turbulent viscosity coefficient was reduced good comparison was obtained a t all the flow conditions examined with both the magnitude and shape of the profile matching well with the experimental data taken half a diameter upstream of the leading edge. The velocity profiles and incidence angles a t the leading edge itself were less sensitive to the back flow length predictions indicating that single-phase performance predictions may be well predicted even if the details of flow separation modeled are incorrect. However, for cavitating flow situations the prediction of the correct swirl in the back flow and the pressure depression in the core becomes critical since it leads to vapor formation. The simulations have been performed using the CRUNCH CFD(Registered Trademark) code that has a generalized multi-element unstructured framework and a n advanced multi-phase formulation for cryogenic fluids. The framework has been validated rigorously for predictions of temperature and pressure depression in cryogenic fluid cavities and has also been shown to predict the cavitation breakdown point for inducers a t design conditions
Code Validation Study for Base Flows
New and old rocket launch concepts recommend the clustering of motors for improved lift capability. The flowfield of the base region of the rocket is very complex and can contain high temperature plume gases. These hot gases can cause catastrophic problems if not adequately designed for. To assess the base region characteristics, advanced computational fluid dynamics (CFD) is being used. As a precursor to these calculations the CFD code requires validation on base flows. The primary objective of this code validation study was to establish a high level of confidence in predicting base flows with the USA CFD code. USA has been extensively validated for fundamental flows and other applications. However, base heating flows have a number of unique characteristics so it was necessary to extend the existing validation for this class of problems. In preparation for the planned NLS 1.5 Stage base heating analysis, six case sets were studied to extend the USA code validation data base. This presentation gives a cursive review of three of these cases. The cases presented include a 2D axi-symmetric study, a 3D real nozzle study, and a 3D multi-species study. The results of all the studies show good general agreement with data with no adjustments to the base numerical algorithms or physical models in the code. The study proved the capability of the USA code for modeling base flows within the accuracy of available data
Design and analysis of cross vaults along history
The history of cross vaults began almost 2,000 years ago with a widespread use during the Middle Ages and Renaissance, becoming nowadays one of the most diffused and fascinating structural typologies of the European building cultural heritage. However, conversely to the undeniable excellence achieved by the ancient masons, the structural behavior of these elements is still at the center of the scientific debate. In this regard, with the aim of reviewing the knowledge on this subject as a concise and valuable support for researchers involved in conservation of historical buildings, with a focus on design rules and structural analysis, the present study firstly introduces the cross vaults from a historical perspective, by describing the evolution of the main geometrical shapes together with basic practical rules used to size them. Then, the article deals with the subsequent advancements in structural analysis methods of vaults, until the development of modern limit analysis.This work was partially carried out under the program "Dipartimento di Protezione Civile - Consorzio RELUIS", signed on 2013-12-27.info:eu-repo/semantics/publishedVersio