800 research outputs found

    Local metabolic changes in subcutaneous adipose tissue during intravenous and epidural analgesia.

    Get PDF
    BACKGROUND: This clinical study aimed at investigating the impact of postoperative thoracic epidural analgesia on extracellular glycerol concentration and glucose metabolism in subcutaneous adipose tissue, using the microdialysis technique. The sympathetic nervous activity, which can be attenuated by epidural anesthesia, influences lipolysis and the release of glycerol. METHODS: Fourteen patients who underwent major abdominal or thoraco-abdominal surgery were studied postoperatively over 3 days. For postoperative analgesia the patients were prospectively randomized to receive either thoracic epidural analgesia with a bupivacaine/morphine infusion (EPI-group, n=6) or a continuous i.v. infusion of morphine (MO-group, n=8). The concentration of glycerol, glucose and lactate in the abdominal and deltoid subcutaneous adipose tissue were measured using a microdialysis technique. RESULTS: The abdominal glycerol levels were equal in both groups. In the deltoid region of the EPI-group, glycerol concentrations started to increase on Day 2, and reached significantly higher levels on Day 3 compared with the MO-group. The glucose and lactate levels showed no differences between groups in the two regions. CONCLUSION: The uniform glycerol levels in abdominal subcutaneous adipose tissue in conjunction with the difference in glycerol levels in the deltoid area indicate that the local lipolysis is different in the two study groups. This might be explained by a regional metabolic influence of thoracic epidural analgesia, possibly via the sympathetic nervous system

    Metabolism during anaesthesia and recovery in colic and healthy horses: a microdialysis study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Muscle metabolism in horses has been studied mainly by analysis of substances in blood or plasma and muscle biopsy specimens. By using microdialysis, real-time monitoring of the metabolic events in local tissue with a minimum of trauma is possible. There is limited information about muscle metabolism in the early recovery period after anaesthesia in horses and especially in the colic horse. The aims were to evaluate the microdialysis technique as a complement to plasma analysis and to study the concentration changes in lactate, pyruvate, glucose, glycerol, and urea during anaesthesia and in the recovery period in colic horses undergoing abdominal surgery and in healthy horses not subjected to surgery.</p> <p>Methods</p> <p>Ten healthy university-owned horses given anaesthesia alone and ten client-owned colic horses subjected to emergency abdominal surgery were anaesthetised for a mean (range) of 230 min (193–273) and 208 min (145–300) respectively. Venous blood samples were taken before anaesthesia. Venous blood sampling and microdialysis in the gluteal muscle were performed during anaesthesia and until 24 h after anaesthesia. Temporal changes and differences between groups were analysed with an ANOVA for repeated measures followed by Tukey Post Hoc test or Planned Comparisons.</p> <p>Results</p> <p>Lactate, glucose and urea, in both dialysate and plasma, were higher in the colic horses than in the healthy horses for several hours after recovery to standing. In the colic horses, lactate, glucose, and urea in dialysate, and lactate in plasma increased during the attempts to stand. The lactate-to-pyruvate ratio was initially high in sampled colic horses but decreased over time. In the colic horses, dialysate glycerol concentrations varied considerably whereas in the healthy horses, dialysate glycerol was elevated during anaesthesia but decreased after standing. In both groups, lactate concentration was higher in dialysate than in plasma. The correspondence between dialysate and plasma concentrations of glucose, urea and glycerol varied.</p> <p>Conclusion</p> <p>Microdialysis proved to be suitable in the clinical setting for monitoring of the metabolic events during anaesthesia and recovery. It was possible with this technique to show greater muscle metabolic alterations in the colic horses compared to the healthy horses in response to regaining the standing position.</p

    Imaging the Dopamine Uptake Site with Ex Vivo [ 18 F]GBR 13119 Binding Autoradiography in Rat Brain

    Full text link
    We studied the binding of [ 18 F]GBR 13119 {1-[[(4-[ 18 F]fluorophenyl) (phenyl)methoxy]ethyl]-4-(3-phenylpropyl)piperazine} to rat brain with autoradiography after intravenous injection. The rank order of binding was dorsal striatum > nucleus accumbens = olfactory tubercle > sub-stantia nigra = ventral tegmental area > other areas. Binding was blocked by prior injection of dopamine uptake blockers but not by injection of dopamine receptor antagonists or drugs that bind to the dialkylpiperazine site. Unilateral 6-hydroxy dopamine lesions of dopamine neurons caused a marked decrease in striatal and nigral binding on the side of the lesion. We conclude that intravenous injection of [ 18 F]GBR 13119 provides a useful marker of presynaptic dopamine uptake sites.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/66209/1/j.1471-4159.1990.tb04178.x.pd

    On the Use of Multiple Probe Insertions at the Same Site for Repeated Intracerebral Microdialysis Experiments in the Nigrostriatal Dopamine System of Rats

    Full text link
    The effects of implantation of a dialysis probe into the striatum of awake rats on indices of dopamine (DA) and serotonin neurotransmission were assessed, first over 24 h following initial insertion of a probe, and then again following reinsertion of a probe at the same site 1 week later. It was found that the basal concentration of DA in dialysate stabilized within 20–40 min after probe implantation, although DA showed a modest decline 24 h later. There was, however, no significant difference in basal DA between two test sessions separated by 1 week. On the other hand, the basal concentrations of the DA metabolites, 3,4-dihydroxyphenylacetic acid and homovanillic acid, progressively increased for 2–3 h after probe implantation and decreased markedly by 24 h later. Furthermore, in contrast to DA, the DA metabolites decreased even further after the second probe insertion. Amphetamine-stimulated DA release was also greatly attenuated following the second probe insertion, relative to the first probe insertion. Two probe insertions had only modest effects on the concentration of 5-hydroxyindoleacetic acid in dialysate, relative to the DA metabolites. It is suggested the effects of two probe insertions on DA metabolism and amphetamine-stimulated DA release described here are indicative of probe-induced damage to the nigrostriatal DA system. If this is the case, multiple probe insertions may not provide a feasible strategy for within-subjects design dialysis experiments over extended periods of time, at least in the DA system of small animals. It is suggested further that a stable basal concentration of DA in dialysate may be an especially poor indicator of the integrity of the dopaminergic input to the striatum.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/65235/1/j.1471-4159.1992.tb10044.x.pd
    corecore