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The cultural transmission of behavior depends on a pupil’s ability to identify and emulate 14 

an appropriate tutor1-4. How the pupil’s brain detects a suitable tutor and encodes the 15 

tutor’s behavior is largely unknown. Juvenile zebra finches readily copy songs of adult 16 

tutors they interact with, but not songs they listen to passively through a speaker5,6, 17 

indicating that social cues generated by the tutor facilitate song imitation. Here we show 18 

that neurons in the midbrain periaqueductal gray (PAG) of juvenile finches are selectively 19 

excited by a singing tutor and, by releasing dopamine (DA) in a sensorimotor cortical 20 

analogue (HVC), help encode tutor song representations used for vocal copying. Blocking 21 

DA signaling in the pupil’s HVC during tutoring blocked copying, whereas pairing 22 

stimulation of PAG terminals in HVC with song played through a speaker was sufficient 23 

to drive copying. Exposure to a singing tutor triggered the rapid emergence of responses 24 

to the tutor song in the pupil’s HVC and a rapid increase in the pupil’s song complexity, 25 

an early signature of song copying7,8. These findings reveal that a dopaminergic 26 

mesocortical circuit detects a tutor’s presence and helps encode the tutor’s performance, 27 

facilitating the cultural transmission of vocal behavior. 28 

  29 



The cortical song nucleus HVC is crucial to singing and song learning7,9-12 and receives 30 

convergent input from premotor, auditory, and neuromodulatory afferents, including dopamine 31 

(DA)-secreting neurons in the midbrain periaqueductal gray (PAG)13-15 (Fig. 1a-c, Extended 32 

Data Fig. 1a-c). In the mammalian PAG, DA neurons encode information about social context, 33 

arousal in response to behaviorally salient stimuli, or reward16-18, raising the possibility that the 34 

PAG to HVC pathway in juvenile finches encodes information about the tutor that facilitates 35 

song imitation. To explore this idea, we implanted tetrodes into the PAG of juvenile male 36 

finches raised in isolation from a tutor (tutor-naive juveniles; see Methods) (Fig. 1d-k). Most 37 

PAG neurons (81.8%: 18/22 neurons from 4 birds) increased their action potential activity in 38 

the presence of a singing tutor (Fig. 1e-g, k), whereas PAG activity was unaffected during 39 

encounters with non-singing adult male finches or female finches, which do not sing (Fig. 1i-40 

j, k). Neural activity in the juvenile’s PAG was not precisely locked to syllables of the tutor 41 

song, was variable across different tutor song bouts, and could remain elevated for hundreds of 42 

milliseconds after the tutor stopped singing (Extended Data Fig. 2c-f), suggesting that PAG 43 

activity evoked by a singing tutor is not simply auditory in nature. Indeed, playback of adult 44 

finch song from a speaker, including that of a recent tutor, failed to evoke activity in the 45 

juvenile’s PAG (Fig. 1h, k). Moreover, song playback from a speaker in the presence of an 46 

adult female bird failed to activate PAG neurons in tutor-naive juveniles (Extended Data Fig. 47 

2a,b). Therefore, PAG neurons in juvenile males respond strongly and selectively to a live 48 



singing tutor and thus can signal the presence of a suitable song model.  49 

These findings raise the possibility that experience of a singing tutor stimulates DA release 50 

from PAG terminals in HVC. We explored this idea by virally expressing a modified dopamine 51 

type 2 (D2) receptor in HVC neurons of tutor-naive juvenile males that increases fluorescence 52 

upon DA binding (Fig. 2) (AAV 2/9.hSyn.GRABDA1h)19. We then head-fixed these juvenile 53 

males in the awake state and used two-photon imaging methods20 to establish that DA levels in 54 

HVC increase in the presence of a singing tutor (Fig. 2c-d, i). In contrast, DA-related changes 55 

in fluorescence were not detected in the juvenile’s HVC in response to song playback (Fig. 2e, 56 

i), or when the juvenile encountered non-singing adult males or females (Fig. 2f, g, i), 57 

paralleling the selective enhancement of PAG activity elicited by a singing tutor. Moreover, 58 

ablating DA neurons in the pupil’s PAG with 6-hydroxydopamine (6-OHDA21) prevented tutor-59 

evoked DA transients in the pupil’s HVC (Fig. 2h, i), confirming that tutor-evoked DA release 60 

in the pupil’s HVC largely originates from the PAG.  61 

To explore whether DA signaling in HVC plays a role in song imitation, we used 6-OHDA to 62 

lesion DA-releasing fibers in the HVC of juvenile male finches raised continuously with adult 63 

male tutors and tracked their song development into adulthood (Fig. 3a-c, Extended Data Fig. 64 

3). Lesions of DA-releasing fibers in HVC made near the onset of the sensitive period for tutor 65 

song memorization (30 days-post-hatch22 or 30 d) prevented song copying (Fig. 3d-e) without 66 



affecting the overall rate of singing (Extended Data Fig. 4a). As adults, these 6-OHDA treated 67 

birds produced abnormally long and acoustically simple syllables, similar to finches raised in 68 

isolation from a tutor22 (Extended Data Fig. 4b, c). The 6-OHDA lesions made in HVC in 30 d 69 

males are permanent and thus could potentially interfere with tutor song memorization (i.e., 70 

sensory learning), the subsequent phase of song copying (sensorimotor learning), or both. 71 

However, 6-OHDA lesions made in the HVC of 45 d males, which have had sufficient tutor 72 

experience to enable accurate copying but are just beginning sensorimotor learning22, did not 73 

affect the juvenile’s ability to copy a tutor song (Fig. 3d, f).  74 

These findings suggest that DA signaling in HVC plays a role in sensory learning but cannot 75 

exclude a more general but developmentally restricted (before 45d, e.g.) role for such signaling. 76 

Therefore, we used microdialysis methods23 to reversibly block DA receptors in the HVC24 of 77 

tutor-naive juvenile males (Age: 43.0 ± 4.9 d [mean ± SD], n = 5) while they were housed with 78 

a tutor for 1.5 h on five consecutive days, allowing us to better determine whether DA signaling 79 

in HVC is crucial during pupil-tutor interactions, when sensory learning occurs (Fig. 3g-h, 80 

Extended Data Fig. 5a-c). Reversibly blocking DA receptors in HVC during but not just after 81 

tutoring sessions blocked song copying (Fig. 3h, Extended Data Fig. 5b-c), without affecting 82 

juveniles’ attentive behaviors to tutors or tutors’ singing rates (Extended Data Fig. 5d-e, 83 

Supplementary Video 1-2). Moreover, reversibly suppressing PAG activity in the pupil with 84 

muscimol during daily tutoring sessions also blocked song copying; notably, juveniles in which 85 



PAG was inactivated also failed to orient to their tutors, even though tutors continued singing 86 

at normal rates (Extended Data Fig. 5d-h, Supplementary Video 3). Thus, tutor-evoked 87 

activation of the pupil’s PAG and concomitant release of DA in HVC are essential to encoding 88 

tutor song experience, and PAG activity may be required for the pupil to attend to a singing 89 

tutor. 90 

The current findings do not exclude the possibility that DA signaling at other sites also 91 

contributes to sensory learning. One potential site is the basal ganglia region Area X11, which 92 

receives dopaminergic input from the ventral tegmental area and substantia nigra pars compacta 93 

(VTA/SNc), as well as from a smaller cohort of TH+ PAG neurons (Extended Data Fig. 1d-g), 94 

and where dopamine signaling plays a role in sensorimotor learning25. Nonetheless, infusing 95 

DA receptor blockers into Area X of juvenile males during daily tutoring sessions did not affect 96 

song copying (Extended Data Fig. 6). Another potential site is the caudal mesopallium (CM), 97 

an auditory forebrain region important to song memory26,27. However, blocking DA receptors 98 

in the CM of juvenile males during daily tutoring sessions did not block song copying 99 

(Extended Data Fig. 5i-k).  100 

These results show that DA release from PAG axon terminals in HVC (PAGHVC terminals) 101 

signals the presence of a suitable model and helps encode this model in the pupil’s brain. 102 

Consequently, artificially activating PAGHVC terminals should compensate for the absence of a 103 



live tutor and facilitate vocal copying in response to song playback. To test this idea, we used 104 

AAVs to express channelrhodopsin-2 (ChR2) bilaterally in the PAG of tutor-naive juvenile 105 

males (Fig. 3i-j, Extended Data Fig. 7a-d). Several weeks (33.3 ± 7.4 days [mean ± SD], n = 106 

6) later, we implanted optical fibers bilaterally over HVC and optogenetically activated 107 

PAGHVC terminals while playing an adult male zebra finch song through a speaker. Pairing 108 

PAGHVC terminal stimulation with song playback resulted in a significant level of song copying 109 

compared to juveniles that had only been exposed to song playback, or to song playback and 110 

optical illumination of HVC in the absence of ChR2 (Fig. 3j, Extended Data Fig. 7b; see 111 

Methods). Moreover, pairing song playback with PAGHVC terminal stimulation while infusing 112 

DA blockers into HVC did not lead to song copying in tutor-naive juveniles (Extended Data 113 

Fig. 7e-g).  114 

To explore how tutor-evoked DA release from PAGHVC axon terminals alters HVC to drive song 115 

imitation, we implanted tetrodes in the HVC of tutor-naive juveniles and recorded neural 116 

activity before and after their initial encounters with a singing tutor (Fig. 4a-f). Spontaneous 117 

burst firing in HVC neurons increased within 1 h after the juvenile’s initial exposure to a 118 

singing tutor (Fig. 4b-c, e), without any change in their mean firing rates (Extended Data Fig. 119 

8d). Because burst firing in HVC is driven by auditory afferents12, this enhanced bursting 120 

suggests that tutoring rapidly potentiates auditory inputs to HVC. In fact, brief (35.0 ± 16.8 121 

min [mean ± SD]) experience with a singing tutor led rapidly (~1 h) to the emergence of 122 



temporally precise responses in the awake juvenile HVC to tutor song playback (Fig. 4d, f, 123 

Extended Data Fig. 8a-c). Furthermore, the mean firing rate of HVC neurons to song playback 124 

was unaffected by tutoring (Extended Data Fig. 8e-f), indicating that neural responses in HVC 125 

became more tightly locked to specific features in the tutor song. None of these juveniles (n = 126 

4) sang during or for several hours after the tutoring session, and thus these physiological 127 

changes were not simply the result of auditory feedback associated with vocal rehearsal. In 128 

another set of tutor-naive juvenile males, we found that tutoring rapidly reduced the kurtosis 129 

of vocal duration (Fig. 4g-h) and increased the mean entropy variance of the juveniles’ songs 130 

(Fig. 4i), two early hallmarks of song copying7,8. Notably, blocking DA signaling in the pupil’s 131 

HVC with 6-OHDA or DA blockers prevented these physiological and behavioral changes (Fig. 132 

4e, f, h-i).  133 

The discovery that DA neurons in the pupil’s PAG are strongly and selectively activated by a 134 

singing tutor parallels an emerging body of evidence that potentially homologous neurons in 135 

the mammal can encode social cues, including those related to reward, context, or novelty16,17. 136 

Indeed, the present findings advance a model in which both social cues and the song-related 137 

auditory input provided by the singing tutor drive the coincident activation of DA receptors 138 

and auditory synapses in HVC, leading to the rapid emergence of auditory representations of 139 

the tutor’s song necessary to song imitation10,20 (Extended Data Fig. 10). This coincident 140 

encoding mechanism could help ensure that the pupil’s brain selectively forms representations 141 



of songs produced by suitable adult tutors, and not of extraneous auditory stimuli. Although 142 

DA-dependent modulation of auditory cortical representations has previously been linked to 143 

perceptual learning28, a notable feature of the DA-dependent process of auditory encoding 144 

described here is that it occurs in a vocal motor region and rapidly drives vocal imitation. More 145 

broadly, DA signaling is enhanced in the motor cortex of primates relative to other 146 

mammals29,30, raising the possibility that augmented DA signaling in motor regions of 147 

songbirds and primates reflects a convergent neural architecture for promoting motor imitation 148 

in response to social models. 149 

150 
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Figure legends 263 

 264 

Figure 1 | Recordings of PAG activity. 265 

a, Schematics of dextran injection into HVC. b, PAG neurons labeled with dextran (green) and 266 

TH antibody (pseudo-colored magenta) (~0.5 mm lateral, R: rostral, V: ventral). c, Proportion 267 

of double-labeled neurons (dextran and TH) in the midbrain (χ2-test: χ2(1) = 623.02, P < 0.001, 268 

n = 4 hemispheres from 3 birds). d, Schematics of tetrode recordings from PAG neurons. e, 269 

PAG unit activity during live tutor songs (red bar) (gray bar: an isolated tutor call) (top: sound 270 

spectrogram, middle: voltage recording, bottom: firing rate). f, PAG unit activity aligned to the 271 

onset of tutor songs (top: averaged spectrogram, middle: spike raster, bottom: mean firing rate). 272 

g, Mean firing rate (FR) during live tutor songs as a function of baseline FR of PAG neurons. 273 

h-j, PAG unit activity aligned to the onset of song playback (h), encounters with a live, non-274 

singing tutor (i), encounters with a live female (j), shown as in f. k, Mean FR of PAG neurons 275 

normalized to baseline FR (two-sided paired t-test: Live song: t(21) = 3.439, P = 0.002; 276 

Playback: t(25) = 0.278, P = 0.783; Live tutor: t(21) = 1.270, P = 0.218; Live female: t(19) = 277 

1.339, P = 0.196; n = 26 neurons, 5 birds). Error bars indicate mean ± SEM. 278 

 279 



 280 

Figure 2 | Imaging of DA in HVC. 281 

a, Schematics of two-photon imaging of DA sensors (GRABDA1h) in HVC. b, Two-photon 282 

image of HVC neurons expressing DA sensors. c, Fluorescence changes (ΔF/F) of GRABDA1h 283 

in a juvenile's HVC neuron in response to live tutor songs (red bars) d, ΔF/F aligned to the 284 

onset of live tutor songs (gray: individual, black: mean). e-h, ΔF/F aligned to the onset of song 285 

playback (e), encounters with a live, non-singing tutor (f), encounters with a live female (g), 286 

and live tutor songs after 6-OHDA injection into PAG (h). i, Mean ΔF/F of HVC neurons (two-287 

sided paired t-test: Live song: t(4) = 3.660, P = 0.022; Playback: t(4) = 0.261, P = 0.807; Live 288 

tutor: t(4) = 1.092, P = 0.336; Live female: t(4) = 1.589, P = 0.187; Live song after 6-OHDA 289 

injection into PAG: t(7) = 1.122, P = 0.324; n = 13 neurons, 5 birds). Error bars indicate mean 290 

± SEM. 291 

 292 

 293 
Figure 3 | Chemical blockade and optogenetic activation of DA signaling in HVC. 294 

a, DA fibers in HVC (pseudo-colored magenta: TH) (~2.4 mm lateral). b, Timeline and 295 

schematics of 6-OHDA injection into HVC. c, Loss of DA fibers in HVC after 6-OHDA 296 

injection at 29 d, as in a (~2.4 mm lateral). d, From top to bottom, spectrograms of a song from 297 

the tutor bird and songs from 90-d pupil birds that received injection into HVC of vehicle, 6-298 

OHDA at ~30 d, or 6-OHDA at ~45 d (red bars denote abnormally long syllables. See Extended 299 

Data Fig. 4b-c). e, Absence of song copying following injection of 6-OHDA into HVC at ~30 300 

d (Tukey-Kramer test: vehicle: n = 7, 6-OHDA: n = 7; at 90 d: P < 0.001). f, Normal levels of 301 

song copying were achieved following injection of 6-OHDA into HVC at ~45 d (Tukey-Kramer 302 



test: vehicle: n = 7 [same birds as in e], 6-OHDA at 45 d: n = 6; at 90 d: P = 1.000). g, Timeline 303 

of DA blocker infusion into HVC using microdialysis. h, Tutor song similarity of 90-d pupils 304 

that received infusion into HVC of vehicle during tutoring (n = 5), DA blockers during tutoring 305 

(Tukey-Kramer test: vs. vehicle: P = 0.011, n = 5), D1-type blocker during tutoring (Tukey-306 

Kramer test: vs. vehicle: P < 0.001, n = 5), or DA blockers after tutoring (Tukey-Kramer test: 307 

vs. vehicle: P = 1.000; n = 5). i, Schematics of PAGHVC terminal activation paired with song 308 

playback. j, Song copying is facilitated by pairing playback with PAGHVC terminal activation 309 

in tutor-naive juveniles (Tukey-Kramer test: ChR2: n = 6; control: n = 6; at 90 d: P = 0.023). 310 

Horizontal red dashed lines in e, f, h, and j show song similarity between 90-d untutored birds 311 

to unrelated adults (See Extended Data Fig. 4b-c). Error bars indicate mean ± SEM. 312 

 313 

 314 

Figure 4 | Changes in HVC activity and song features after live tutoring.  315 

a, Schematic of HVC recordings in pupils. b-c, Spontaneous HVC unit activity (b) and the 316 

histogram of the interspike intervals before (black) and after (cyan) live tutoring (c). d, HVC 317 

unit activity aligned to tutor song motif onset (top: averaged spectrogram; middle: raster, 318 

bottom: mean FR across trials; horizontal bars: syllables). e, Probability of burst activity (>100 319 

Hz) increased after live tutoring in control juveniles (two-sided paired t-test: t(34) = 2.490, P 320 

= 0.018, n = 35 neurons, 4 birds), but not in juveniles with 6-OHDA injected into HVC (two-321 



sided paired t-test: t(13) = 0.774, P = 0.453, n = 14 neurons, 2 birds). f, Coefficients of variance 322 

(CV) of firing rate across trials increased in control juveniles (two-sided paired t-test: t(25) = 323 

4.080, P < 0.001, n = 26 neurons, 4 birds), but not in juveniles with 6-OHDA injected into 324 

HVC (two-sided paired t-test: t(10) = 0.640, P = 0.537, n = 11 neurons, 2 birds). g, 325 

Spectrograms of juvenile songs before (top) and after (bottom) live tutoring (red bar: long 326 

vocalization). h, After live tutoring, kurtosis of vocal duration decreased in control juveniles 327 

(two-sided paired t-test: 1.5 h: t(5) = 5.563, Bonferroni corrected P = 0.008, n = 6), but not in 328 

juveniles with 6-OHDA or DA blockers injected into HVC (two-sided paired t-test: 1.5 h: t(5) 329 

= 1.364, Bonferroni corrected P = 0.692, n = 6). i, After live tutoring, mean Wiener entropy 330 

variance (EV) increased in control juveniles (two-sided paired t-test: at 1.5 h: t(5) = 4.059, 331 

Bonferroni corrected P = 0.029, n = 6), but not in juveniles with 6-OHDA or DA blockers 332 

injected into HVC (two-sided paired t-test: at 1.5 h: t(5) = 1.432, Bonferroni corrected P = 333 

0.635, n = 6). Juveniles did not sing during tutoring (0-1.5 h. See Extended Data Fig. 9). Error 334 

bars indicate mean ± SEM. 335 

  336 



Methods 337 

Animal model 338 

Juvenile male (15-90 d), adult male (>200 d), and adult female (>200 d) zebra finches 339 

(Taeniopygia guttata) were obtained from the Duke University Medical Center breeding 340 

facility. All experimental procedures were in accordance with the NIH guidelines and approved 341 

by the Duke University Medical Center Animal Care and Use Committee. Birds were kept 342 

under a 14/10-h light/dark cycle with free access to food and water. Data were collected from 343 

96 birds (Supplementary Table). 344 

Song analysis 345 

Songs were automatically recorded with Sound Analysis Pro (SAP2011)31 in a soundproof box. 346 

Vocalizations of >10 ms were detected by thresholding of the recorded sounds. Imitation of the 347 

tutor song was quantified as percent similarity (asymmetrical similarity) between the song 348 

motifs from pupil birds and their tutors using SAP201131 with default parameters for zebra 349 

finches, and reported as tutor song similarity. First, the song motif (a stereotyped sequence of 350 

syllables constituting an adult zebra finch song) of each bird was determined as the most 351 

frequently observed syllable sequence. Then, percent similarity was calculated for 352 

representative song motifs randomly chosen from pupils and their tutor, and averaged across 353 

≥10 comparisons to report as tutor song similarity. For immature subsongs that do not have a 354 

stereotyped song motif, we used randomly chosen part of subsongs with the duration similar to 355 

the tutor song motif for calculating percent similarity. For isolated birds in Extended Data Fig. 356 

4c, percent similarity was calculated between the song motifs from isolated birds and unrelated, 357 

normally raised adult zebra finches. A song bout was detected as successive vocalizations with 358 

≥3 syllables (to exclude call bouts) separated by an inter-bout interval of >400 ms. Kurtosis of 359 

vocal duration and Wiener entropy variance (EV) were calculated based on all the song bouts 360 

in each 90-minute time window. 361 

Tutoring of juvenile birds 362 

Juvenile birds were raised by their parents with their siblings until ~45 d in experiments 363 

depicted in Fig. 3a-f. Otherwise, juvenile birds were separated from their parents and siblings 364 

at 15-30 d (i.e., tutor-naive juveniles), and encountered an unfamiliar adult male (tutor) only 365 

during tutoring sessions. During a tutoring session, a juvenile bird and tutor were separated by 366 

a plastic grating or transparent glass, so they could acoustically and visually interact but direct 367 

physical interactions were prevented. The tutor was either manually introduced into the 368 

neighboring chamber by an experimenter, or presented through an electric glass whose 369 

transparency can be remotely controlled. Attention of juvenile birds to the tutor was quantified 370 

as the time that juvenile birds were awake and near the tutor without foraging, drinking, 371 

preening, or singing, and normalized to the total time of observation (>5 min) during tutoring 372 



sessions. Untutored isolated birds depicted in Extended Data Fig. 4b-c were kept isolated from 373 

adult males until 90 d. 374 

General surgery 375 

Detailed procedures of surgery were previously provided23. Briefly, juvenile birds were 376 

anesthetized with 2% isoflurane inhalation and placed on a custom stereotaxic apparatus with 377 

a heat blanket. Target cites for injection and implantation were determined by stereotaxic 378 

coordinates and multiunit activity. Stereotaxic coordinates were [0.0 mm rostoral, 2.4 mm 379 

lateral, and 0.5 mm ventral] for HVC; [3.4 mm rostral, 0.5 mm lateral, and 6.3 mm ventral 380 

(head angle: 58°)] for PAG; [5.8 mm rostral, 1.6 mm lateral, and 3.0 mm ventral (head angle: 381 

40°)] for Area X; and [1.3 mm rostral, 1.2 mm lateral, and 0.5 mm ventral] for CM. Reagents 382 

or viruses were injected using Nanoject-II (Drummond Scientific). Viral injection was 383 

performed bilaterally with the volume of 483-966 nL per hemisphere. Viruses were obtained 384 

from the Penn Vector Core (Pennsylvania, USA), UNC Vector Core (Chapel Hill, USA), 385 

Janelia Virus Service Facility (Ashburn, USA), and Vigene Biosciences (Rockville, USA). 386 

Experiments were performed >30 d after the viral injection. Birds with unsuccessful injection 387 

or implantation were discarded from the analysis. 388 

Injection of 6-OHDA 389 

Juvenile birds received bilateral injection of 200-450 nL 6-OHDA solution into HVC at either 390 

~30 d (mean ± SD: 30.1 ± 4.2 d, range: 25-34 d, n = 7) or ~45 d (mean ± SD: 44.5 ± 3.0 d, 391 

range: 39-47 d, n = 6). The solution was PBS-based and included 5-20 mM 6-OHDA 392 

hydrochloride (Santa Cruz, sc-203482), 10 mM L-ascorbic acid (MilliporeSigma, A92902), 393 

and 1 µM desipramine hydrochloride (Tocris, 3067), which was included as an inhibitor for 394 

noradrenaline and serotonin transporters to protect noradrenergic and serotonergic neurons at 395 

the injection site. Control birds received injection of PBS with 10 mM ascorbic acid and 1 µM 396 

desipramine at ~30 d (mean ± SD: 29.3 ± 3.6 d, range: 22-32 d, n = 7). Drugs were dissolved 397 

into PBS immediately before injection in place of equimolar NaCl (Working solution: ~300 398 

mOsm, pH 7.3). After injection, birds were returned to their original home cage until ~45 d 399 

when they were isolated in a soundproof box until 90 d. 400 

Microdialysis infusion of drugs 401 

Tutor-naive juveniles (~45 d, mean ± SD: 43.8 ± 5.5 d, range: 32-57 d, n = 34) received bilateral 402 

implantation of a microdialysis probe. After 1-3 d of implantation (mean ± SD: 45.5 ± 5.8 d, 403 

range: 33-60 d, n = 34), tutoring sessions were conducted for 5 consecutive days. Each tutoring 404 

session consisted of 90-minute tutor presentation. Drug was infused into the target area (HVC, 405 

Area X, CM, or PAG) either 90 minutes before or immediately after the tutor presentation, and 406 

washed with saline 180 minutes after the injection (Fig. 3g). The tutor bird typically sang >30 407 

motifs in a session (See Extended Data Fig. 5e). For a session in which the tutor did not sing 408 

any song, an additional tutoring session was conducted on the next day. As a blocker for D1- 409 

and D2-type receptors, 5 mM R(+)-SCH-23390 hydrochloride (MilliporeSigma, D054) and 5 410 



mM S-(-)-sulpiride (Tocris, 0895) were respectively used and dissolved into saline. To 411 

inactivate PAG, 2.5 mM muscimol (MilliporeSigma, M-1523) dissolved into saline was infused 412 

into the PAG. 413 

Histology and imaging 414 

Birds were deeply anesthetized with intramuscular injection of 20 μL Euthasol (Virbac) and 415 

transcardially perfused with PBS, followed by perfusion with 4% (wt/vol) paraformaldehyde 416 

(PFA) in PBS. The removed brain was post-fixed and cryoprotected with 30% (wt/vol) sucrose 417 

and 4% (wt/vol) PFA in PBS overnight. Frozen sagittal sections (thickness of 50 μm) were 418 

prepared with a sledge microtome (Reichert) and collected in PBS. For immunohistochemistry, 419 

sections were washed twice in PBS, permeabilized with 0.3% Triton X-100 in PBS (PBST) for 420 

1 h, blocked with 10% Blocking One Histo (06349-64, Nacalai Tesque) in PBST for 1 h, and 421 

incubated with rabbit primary antibody for TH (1:500, AB152; MilliporeSigma) or rabbit 422 

primary antibody for DBH (1:2000, #22806; ImmunoStar) in PBST with 10% Blocking One 423 

Histo at 4 °C overnight. Then, sections were washed three times in PBST and incubated with 424 

anti-rabbit secondary antibody (1:500; Jackson ImmunoResearch) in PBST at room 425 

temperature for 1 h, followed by three washes in PBS. Sections were coverslipped with 426 

Fluoromount-G (SouthernBiotech), and then imaged with a confocal microscope (SP8; Leica) 427 

through a 20x objective lens controlled by LAS X software (Leica). To label PAG neurons that 428 

project to HVC or Area X, dextran Alexa Fluor 488 (D-22910; ThermoFisher) was injected 429 

into HVC or Area X of juvenile birds (Age: mean ± SD: 35.3 ± 7.0 d, range: 28-42 d, n = 3 for 430 

HVC, Age: mean ± SD: 47.7 ± 15.3 d, range: 36-65 d, n = 3 for Area X) 4–7 d before perfusion. 431 

Retrogradely labeled neurons were manually counted in PAG and SNc/VTA, each of which 432 

was densely packed with TH-positive (TH+) neurons. Images were shown as max-projected 433 

images of sagittal sections. To quantify TH+ fibers in HVC, TH+ fibers in HVC shelf/NCL, 434 

and DBH+ fibers in HVC, the fiber density was calculated in >0.04 mm2 areas from each region 435 

as the fraction of areas with the fluorescence more than [mean + 10 SD] of the background 436 

fluorescence. For analysis on HVC shelf/NCL, a >0.04 mm2 region located ~0.6 mm ventral 437 

from HVC was manually selected. 438 

Two-photon imaging and analysis  439 

Viruses coding DA sensors (AAV2/9-hSyn-GRABDA1h or AAV2/9-CAG-GRABDA1h), 440 

developed in Yulong Li's lab19, were injected into HVC of tutor-naive juveniles (~30 d, mean 441 

± SD: 32.6 ± 5.3 d, range: 25-39 d, n = 5), and HVC was imaged after implantation of a head-442 

post and cranial window >30 days later (mean ± SD: 66.6 ± 6.0 d, range: 60-73 d, n = 5). To 443 

ablate DA-releasing PAG neurons, 200 nL 6-OHDA solution (10 mM 6-OHDA, 10 mM L-444 

ascorbic acid, and 1 µM desipramine hydrochloride) was injected into PAG 2 days before 445 

imaging. Images were collected at 15.5 Hz with a resonant scanning two-photon microscope 446 

(Neurolabware) that applies a mode-locked titanium sapphire laser (Mai Tai DeepSee) at 920 447 

nm through a 16x objective lens (0.8 NA water immersion, Nikon). The objective lens was 448 



covered with black cloth to prevent room light from being detected by the photomultipliers. 449 

During imaging, a head-fixed bird in a dim room experienced playback of an adult zebra finch 450 

(tutor) song bout (3 seconds. 7 introductory notes and 3 motifs comprising 5 syllables), 451 

encounters with an adult male tutor, encounters with an adult female bird, and a singing tutor 452 

with a randomized order. Images were acquired >10 trials for each condition, and regions of 453 

interest (ROIs) were automatically or manually selected after image alignment with MATLAB 454 

programs (Scanbox). After subtraction of background fluorescence in an annular region 455 

surrounding each ROI, signals were calculated as mean fluorescence within each ROI. Then, 456 

ΔF/F of the ROI was calculated for each trial as 100 * (F(t) - F0) / F0 [%], where F(t) was a 457 

time series of ROI signals, and F0 was the average of baseline ROI signals for the 5 s-period 458 

just before the onset of stimulus presentation. Mean ΔF/F was calculated for the 5 s-period 459 

after the onset of stimulus presentation, and averaged across trials in each condition. 460 

Optogenetics 461 

Tutor-naive juvenile birds received injection of either AAV2/9-CAG-ChR2-mCherry, AAV2/1-462 

CAG-ChR2-mCherry, or AAV2/9-CAG-NRX-ChR2-YFP to PAG at ~35 d (mean ± SD: 34.0 463 

± 4.8 d, range: 30-40 d, n = 9). Laser was bilaterally applied through optic fibers (core: 200 464 

µm; Thorlabs) implanted to HVC. Juvenile birds received a tutoring session per day for 5 465 

consecutive days starting at ~60-70 d (mean ± SD: 64.0 ± 4.9 d, range: 61-71 d, n = 9). In each 466 

tutoring session, a juvenile bird experienced playback of a song bout (mean amplitude: 70 dB 467 

SPL, 7 introductory notes and 3 motifs comprising 5 syllables) 10 times (30 motifs) within 30 468 

minutes. To block DA signaling in HVC, DA blockers were infused into HVC with 469 

microdialysis probes 90 minutes before the tutoring session, and washed with saline 470 

immediately after the tutoring session (n = 3). Experimental birds received repetitive laser 471 

stimulation (10 ms; 20 Hz) throughout the playback. Control birds consisted of a group that 472 

received injection of viruses coding GFP and implantation of optic fibers (n = 2, scAAV2/9-473 

CMV-GFP or AAV2/9-CAG-GFP) at ~35 d (mean ± SD: 36.5 ± 6.4 d, range: 32-41 d, n = 2), 474 

a group that did not receive viral injection but implantation of optic fibers (n = 2), and a group 475 

that did not receive injection, implantation, or laser stimulation (n = 2). These groups listened 476 

to playback in the same way as experimental birds (Age: mean ± SD: 58.5 ± 8.5 d, range: 54-477 

73 d, n = 6), and were analyzed together since we did not find significant differences in learning 478 

abilities between these groups. 479 

Chronic recording from PAG and HVC 480 

Tetrodes (A2x2-tet-3/10mm-150-150-121, NeuroNexus) were implanted into the HVC or the 481 

PAG of tutor-naive juveniles (Age: mean ± SD: 51.3 ± 13.4 d, range: 27-71 d, n = 11). Birds 482 

were habituated to a dummy probe (1.5-2 g) on the head for ~7 d before the implantation. Data 483 

were collected with a universal serial bus (USB) interface board (RHD2000; Intan 484 

Technologies) after band-pass filtering (0.2–10 kHz) and sampling at 30 kHz with a small 485 

amplifier board (RHD2132 16-Channel; Intan Technologies) on the bird’s head. Unit activity 486 



was sorted in a semi-automated fashion with a custom C++ software using a support vector 487 

machine algorithm (M.T.). Unit activity with a mean amplitude >3 SD of noise was used for 488 

subsequent analysis. Recording of song-related activity was triggered by xpctarget in 489 

MATLAB (MathWorks). To block DA signaling in HVC, juvenile birds received an injection 490 

of 6-OHDA into HVC 2-5 days before tetrode recording from the same HVC. Mean FR of PAG 491 

neurons was calculated for >10 trials with >0.5 seconds after the onset of singing or song 492 

playback and 5 s after presentation of a male or female bird, and averaged after normalization 493 

with mean spontaneous FR calculated for >10 seconds before the presentation of stimuli. 494 

Probability of burst activity in HVC neurons was calculated for >300 s spontaneous activity 495 

before and after exposure to a live tutor. CV FR across trials of HVC neurons was calculated 496 

for 50 ms-bin with a hop size 1 ms across >15 trials, and reported as average of CV FR from 497 

all the bins in the motif (>0.5 seconds) if the mean FR during playback was >0.05 Hz. For data 498 

analysis, Igor Pro (WaveMetrics), MATLAB, and Microsoft Excel were used. 499 

Statistics 500 

Error bars and values in the text indicate mean ± standard error of mean (SEM), unless 501 

otherwise noted. Two-way ANOVA was performed in MATLAB to examine significance of 502 

the main effect of 6-OHDA (F(2,85) = 53.10, P < 0.001) (Fig. 3e-f), DA blockers to HVC, DA 503 

blockers to CM, and muscimol to PAG (F(5,99) = 23.17, P < 0.001) (Fig. 3h and Extended 504 

Data Fig. 5c, h, k), DA blockers to Area X (F(1,30) = 0.22, P = 0.640) (Extended Data Fig. 6c), 505 

optogenetic activation of PAG terminals in HVC (F(2,47) = 16.61, P < 0.001) (Fig. 3j and 506 

Extended Data Fig. 7f), followed by post-hoc Tukey-Kramer test to report significant 507 

difference between conditions at each age window. To examine the different proportion of 508 

labeled neurons in PAG and VTA/SNc, χ2-tests were performed. Two-way ANOVA was 509 

performed in MATLAB to examine significance of the main effect of blockage of DA signaling 510 

on kurtosis syllable duration (F(1,39) = 19.69, P < 0.001) (Fig. 4h), entropy variance (F(1,39) 511 

= 4.84, P = 0.034) (Fig. 4i), and song rate (F(1,39) = 0.16, P = 0.691) (Extended Data Fig. 9), 512 

followed by Tukey-Kramer test to report significant difference between conditions at each time 513 

window, and by paired t-test with Bonferroni correction to report significant difference between 514 

before and after exposure to tutor songs. One-way ANOVA was performed in MATLAB to 515 

examine the main effect of different conditions in Fig. 1k and Extended Data Fig. 2b (F(4,93) 516 

= 6.84, P < 0.001), Fig. 2i (F(4,23) = 10.31, P < 0.001), Extended Data Fig. 3c (F(2,12) = 517 

13.42, P < 0.001), Extended Data Fig. 3d (F(2,12) = 0.14, P = 0.870), Extended Data Fig. 4a 518 

(F(2,17) = 0.28, P = 0.757), Extended Data Fig. 5d (F(2,7) = 30.40, P < 0.001), and Extended 519 

Data Fig. 5e (F(2,10) = 0.78, P = 0.486), each followed by Tukey-Kramer test to report 520 

significant difference between conditions. In other analyses, paired t-test (Figs. 1k, 2i, 4h,i, 521 

Extended Data Figs. 2b, 8d-f) or unpaired t-tests (Extended Data Figs. 3e, 4c) were performed 522 

in Microsoft Excel. Multiple data from a bird are indicated with the same markers in Figs. 523 

1c,g,k, 2i, 4e,f and Extended Data Figs. 1b,c,e,f,g, 2b, 3c-e, 8d-f. Statistical tests performed 524 



were two-sided. Asterisks show P < 0.050. 525 

Code availability 526 

Custom code or software is available from the corresponding author upon reasonable request. 527 

Method references 528 

31    Tchernichovski, O., Nottebohm, F., Ho, C. E., Pesaran, B. & Mitra, P. P. A procedure 529 

for an automated measurement of song similarity. Anim Behav 59, 1167-1176, 530 

doi:10.1006/anbe.1999.1416 (2000). 531 
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Extended Data figure legends 533 

 534 

Extended Data Figure 1 | Distribution of HVC-projecting neurons and Area X-projecting 535 

neurons in the midbrain. 536 

a, From left to right, a max-projected image of serial sagittal sections visualized with a confocal 537 

microscope, showing a lateral part of PAG (lPAG) (~1.0 mm lateral), a medial part of PAG 538 

(mPAG, ~0.2 mm lateral), SNc (~1.2 mm lateral), and VTA (~0.2 mm lateral), each of which 539 

was labeled with dextran injected into HVC (green) and an antibody for TH (pseudo-colored 540 

magenta). Similar results were obtained in 4 independently repeated experiments (R: rostral, 541 

V: ventral). b, Proportion of HVC-projecting neurons in PAG and VTA/SNc (χ2-test: χ2(1) = 542 

406.54, P < 0.001, n = 4 hemispheres from 3 birds). c, Proportion of TH-positive (TH+) 543 

neurons in HVC-projecting neuron subsets in PAG and VTA/SNc (χ2-test: χ2(1) = 204.62, P < 544 

0.001, n = 4 hemispheres from 3 birds). d, From left to right, a max-projected image of serial 545 

sagittal sections visualized with a confocal microscope, showing PAG (~0.6 mm lateral), SNc 546 

(~0.6 mm lateral), and VTA (~0.2 mm lateral), each of which was labeled with dextran injected 547 

into Area X (green) and an antibody for TH (pseudo-colored magenta). Similar results were 548 

obtained in 3 independently repeated experiments. e, Proportion of double-labeled neurons 549 

(dextran and TH) in PAG and SNc/VTA (χ2-test: χ2(1) = 493.92, P < 0.001, n = 3 hemispheres 550 

from 3 birds) in birds that received injection of dextran into Area X. f, Proportion of Area X-551 

projecting neurons in PAG and VTA/SNc (χ2-test: χ2(1) = 472.07, P < 0.001, n = 3 hemispheres 552 

from 3 birds). g, Proportion of TH+ neurons in Area X-projecting neuron subsets in PAG and 553 

VTA/SNc (χ2-test: χ2(1) = 55.14, P < 0.001, n = 3 hemispheres from 3 birds). Error bars indicate 554 

mean ± SEM. 555 

 556 



 557 

Extended Data Figure 2 | Juvenile male PAG activity in response to song playback in the 558 

presence of a female bird and live songs of a male bird. 559 

a, Tutor-naive juvenile male finch PAG activity aligned to the onset of 35 presentations of song 560 

playback in the presence of an adult female bird (top: averaged sound spectrogram, middle: 561 

spike raster plot, bottom: mean firing rate). b, Mean firing rate (FR) during presentation of 562 

song playback in the presence of a female bird, normalized to baseline FR (two-sided paired t-563 

test: t(7) = 0.620, P = 0.555; n = 8 neurons from 2 birds). c, PAG activity during a tutor song 564 

bout (top: sound spectrogram, middle: voltage recording, bottom: firing rate, blue bar: song 565 

motif). d, PAG unit activity aligned to the offset of a live tutor's song bouts (red bar: live song), 566 

shown as in a. e, A max-projected image of serial sagittal sections visualized with a confocal 567 

microscope, showing the site of tetrode recordings in PAG (~0.8 mm lateral of the midline). f, 568 

PAG unit activity aligned to the onset of live tutor's song motifs, shown as in a. Note that the 569 

tutor often sings multiple motifs within a single bout, thus some motifs precede (and follow) 570 

the alignment time. Error bars indicate mean ± SEM. 571 

 572 

 573 

Extended Data Figure 3 | Effects of 6-OHDA injection into HVC on DA fibers in HVC 574 

and surrounding regions and on noradrenergic/adrenergic fibers in HVC  575 

a, From left to right, a max-projected image of serial sagittal sections visualized with a confocal 576 



microscope, showing HVC with TH immunolabeling (~2.4 mm lateral), HVC shelf and 577 

caudolateral nidopallium (NCL) just ventral to HVC with TH immunolabeling (~2.4 mm 578 

lateral), and HVC with dopamine beta-hydroxylase (DBH) immunolabeling (~2.4 mm lateral) 579 

in control birds, which received injection of vehicle into HVC. Similar results were obtained 580 

in 5 independently repeated experiments (orientation is similar to b). b, From left to right, a 581 

max-projected image of serial sagittal sections visualized with a confocal microscope, showing 582 

HVC with TH immunolabeling (~2.4 mm lateral), HVC shelf and NCL just ventral to HVC 583 

with TH immunolabeling (~2.4 mm lateral), and HVC with DBH immunolabeling (~2.4 mm 584 

lateral) in birds that received injection of 6-OHDA into HVC 2 days before tissue fixation. 585 

Similar results were obtained in 4 independently repeated experiments (D: dorsal, R: rostral). 586 

c, Density of TH-positive (TH+) fibers in HVC of control birds (n = 5 hemispheres from 3 587 

birds) was higher than that of birds that received injections of 6-OHDA 2 days before fixation 588 

(Tukey-Kramer test: P = 0.002) (n = 4 hemispheres from 2 birds), and that of birds that received 589 

injections of 6-OHDA ~60 days before fixation, as in Fig. 3b-c (Tukey-Kramer test: P = 0.002) 590 

(n = 6 hemispheres from 4 birds). d, Density of TH+ fibers in HVC shelf and NCL in control 591 

birds (n = 5 hemispheres from 3 birds), birds that received injection of 6-OHDA 2 days before 592 

fixation (n = 4 hemispheres from 2 birds), and birds that received injection of 6-OHDA ~60 593 

days before fixation, as in Fig. 3b-c (n = 6 hemispheres from 4 birds). e, Density of DBH-594 

positive (DBH+) fibers in HVC in control birds (n = 4 hemispheres from 2 birds) and birds that 595 

received injection of 6-OHDA 2 days before injection (n = 4 hemispheres from 2 birds) was 596 

not significantly different (two-sided unpaired t-test: t(7) = 0.379, P = 0.716). Error bars 597 

indicate mean ± SEM. 598 

 599 

 600 

Extended Data Figure 4 | Ablation of DA terminals in HVC did not affect song rate but 601 

decreased song imitation to the level of birds raised in isolation from a tutor. 602 

a, The song rates of birds that received injection of vehicle (n = 7), 6-OHDA at ~30 d (n = 7), 603 

and 6-OHDA at ~45 d (n = 6) were not significantly different (one-way ANOVA: F(2,17) = 604 

0.283, P = 0.757). b, Spectrograms from a 90-d bird that was raised in isolation from a tutor 605 

(top) and from a 90-d bird that was normally tutored but received injection of 6-OHDA into 606 

HVC at 30 d (bottom). c, Similarity of 90-d untutored (Isolated) birds’ songs to songs of 607 

unrelated adult zebra finches that had been normally tutored (n = 3) was not significantly 608 



different from tutor song similarity of 90-d pupils that received injection of 6-OHDA into HVC 609 

at ~30 d (n = 7) (two-sided unpaired t-test: t(9) = 0.013, P = 0.990), but was significantly 610 

different from tutor song similarity of 90-d pupils that received injection of vehicle at ~30 d (n 611 

= 7) (t(9) = 3.028, P = 0.014), or from tutor song similarity of 90-d pupils that received injection 612 

of 6-OHDA into HVC at ~45 d (n = 6) (two-sided unpaired t-test: t(8) = 3.314, P = 0.011) (song 613 

data from birds injected with 6-OHDA into HVC at ~30 d is same as Fig. 3e; song similarity 614 

data from birds injected in HVC with vehicle at ~30 d or 6-OHDA at ~45 d are not shown here 615 

but are shown in Fig. 3f). Error bars indicate mean ± SEM. 616 

 617 

 618 

Extended Data Figure 5 | Effects of infusing DA blockers into HVC or CM and infusing 619 

muscimol into PAG on song copying. 620 

a, Schematics showing infusion of DA blockers into HVC. b, From top to bottom, sound 621 

spectrograms of a song of a tutor bird, a 90-d pupil that received infusion of vehicle during 622 

tutoring sessions, a 90-d pupil that received infusion of both D1- and D2-type DA blockers 623 



(DA blockers) during tutoring sessions, a 90-d pupil bird that received infusion of D1-type 624 

blocker during tutoring sessions, and 90-d pupil that received infusion of both D1- and D2-625 

type DA blockers after tutoring sessions. c, Developmental changes in tutor song similarity of 626 

pupils that received infusion of both D1- and D2-type DA blockers (DA blockers) into HVC 627 

during tutoring sessions (top, n = 5), a D1-type blocker into HVC during tutoring sessions 628 

(middle, n = 5), or DA blockers into HVC immediately after tutoring sessions (bottom, n = 5). 629 

Asterisks indicate P < 0.050 with Tukey-Kramer test (See Methods). d, Proportion of time that 630 

juvenile birds attended to the tutor during tutoring sessions was not significantly different 631 

between birds that received vehicle (n = 3) or DA blockers into HVC (n = 4) (Tukey-Kramer 632 

test: P = 0.871). The attention time of juvenile birds that received infusion of muscimol into 633 

PAG (n = 3) was lower than that of control birds (Tukey-Kramer test: P = 0.001) and that of 634 

birds that received injection of DA blockers into HVC (Tukey-Kramer test: P < 0.001). e, 635 

Singing rates of the tutor bird to pupils that received vehicle into HVC (n = 5) were not different 636 

from that to pupils that received injection of DA blockers into HVC (n = 5) or muscimol into 637 

PAG (n = 3) (one-way ANOVA: F(2,10) = 0.776, P = 0.486). f, Schematics showing infusion 638 

of muscimol into PAG. g, A sound spectrogram of a song of a 90-d pupil that received infusion 639 

of muscimol into PAG during tutoring sessions. A sound spectrogram of the tutor song is shown 640 

in b. h, Tutor song similarity of pupil birds that received infusion of vehicle into HVC and 641 

birds that received infusion of muscimol blockers into PAG were significantly different (Tukey-642 

Kramer test: vehicle: n = 5, muscimol to PAG: n = 3; at 90 d: P = 0.007). i, Schematics showing 643 

infusion of DA blockers into CM (DA blockers possibly diffused into both the medial and 644 

lateral CM). j, A sound spectrogram of a song of a 90-d pupil that received infusion of DA 645 

blockers into CM during tutoring sessions. A sound spectrogram of the tutor song is shown in 646 

b. k, Tutor song similarity of pupil birds that received infusion of vehicle into HVC and birds 647 

that received infusion of DA blockers into CM were not significantly different (Tukey-Kramer 648 

test: vehicle: n = 5, DA blockers to CM: n = 3; at 90 d: P = 1.000). Horizontal red dashed lines 649 

in c, h, and k show song similarity between 90-d untutored birds and unrelated adult male zebra 650 

finches that had been raised with normal exposure to a tutor (See Extended Data Fig. 4b-c). 651 

Error bars indicate mean ± SEM. 652 

 653 

 654 
Extended Data Figure 6 | Infusion of DA blockers into Area X in juvenile males did not 655 



disrupt song copying. 656 

a, Schematics (top) and schedule (bottom) of infusion of DA blockers into Area X. b, Sound 657 

spectrograms of a song of a tutor (top), a 90-d bird that received infusion of vehicle into Area 658 

X during tutoring sessions (middle), and a 90-d bird that received infusion of DA blockers into 659 

Area X during tutoring sessions (bottom). c, Tutor song similarity of pupil birds that received 660 

infusion of vehicle into Area X and birds that received infusion of DA blockers into Area X 661 

were not significantly different (Tukey-Kramer test: vehicle: n = 4, DA blockers: n = 4; at 90 662 

d: P = 1.000). The horizontal red dashed line shows song similarity between 90-d untutored 663 

birds and unrelated adult male zebra finches that had been raised with normal exposure to a 664 

tutor (See Extended Data Fig. 4b-c). Error bars indicate mean ± SEM. 665 

 666 

 667 

Extended Data Figure 7 | Optogenetic activation of PAGHVC terminals paired with song 668 

playback. 669 

a, Schematics (left) and schedule (right) of optogenetic stimulation of PAGHVC terminals paired 670 

with song playback. b, Sound spectrograms of song playback used in tutoring sessions (top), a 671 

song of a 90-d pupil tutored by song playback without viral injection and laser stimulation 672 

(upper middle), and 90-d pupils that received activation of PAGHVC terminals paired with song 673 

playback (lower middle and bottom). c, From left to right, a max-projected image of serial 674 



sagittal sections of PAG (left, ~0.5 mm lateral), showing PAG neurons expressing both ChR2 675 

(green) and TH (pseudo-colored magenta) (arrows), SNc (middle, ~0.8 mm lateral), and VTA 676 

(right, ~0.3 mm lateral). Similar results were obtained in 6 independently repeated experiments. 677 

d, Multiunit activity in PAG, showing time-locked response to laser stimulation at 2 Hz (top) 678 

and 20 Hz (bottom). e, Schematics of optogenetic stimulation of PAGHVC terminals paired with 679 

song playback while infusing DA blockers into HVC. f, Tutor song similarity of pupils that 680 

received activation of PAGHVC terminals paired with song playback while infusing DA blockers 681 

into HVC (red, n = 3) was not different from control birds shown in Fig. 3j (Tukey-Kramer 682 

test: at 90 d: P = 1.000), but lower than that received activation of PAGHVC terminals paired 683 

with song playback shown in Fig. 3j (Tukey-Kramer test: at 90 d: P = 0.019). g, A sound 684 

spectrogram of a 90-d pupil that received optogenetic activation of PAGHVC terminals paired 685 

with song playback while infusing DA blockers into HVC. A sound spectrogram of the song 686 

playback used in tutoring sessions is shown in b. Error bars indicate mean ± SEM. 687 

 688 

 689 

Extended Data Figure 8 | Spike activity of HVC neurons in juvenile male zebra finches 690 

before and after their first exposure to live tutor songs. 691 

a-c, Action potential activity of an HVC neuron to tutor song playback before exposure to a 692 

singing tutor (a), to live tutor songs (b), and to tutor song playback after exposure to live tutor 693 

songs (c) (top: sound spectrogram, bottom: voltage recording, bottom right: exemplar 50 spikes 694 

[gray] and their average [black]. circle: individual spike. blue bar: tutor song motif). d, 695 

Spontaneous firing rate (FR spont) of HVC neurons of juvenile males before and after exposure 696 

to live tutor songs (two-sided paired t-test: Mean FR. Before: 1.6 ± 0.3 Hz; After: 1.6 ± 0.4 Hz; 697 



t(34) = 0.794, P = 0.433, n = 35, 4 birds). e, Firing rate of juvenile male HVC neurons during 698 

playback of tutor songs (FR during playback) before and after exposure to live tutor songs 699 

(two-sided paired t-test: Mean FR. Before: 2.0 ± 0.6 Hz; After: 2.1 ± 0.6 Hz; t(34) = 0.468, P 700 

= 0.643, n = 35, 4 birds). f, Changes in firing rate (ΔFR) of juvenile HVC neurons in response 701 

to playback of tutor songs before and after exposure to live tutor songs (two-sided paired t-702 

test:ΔFR. Before: 0.5 ± 0.4 Hz; After: 0.5 ± 0.2 Hz; t(34) = 0.079, P = 0.937, n = 35, 4 birds).  703 

 704 

 705 

Extended Data Figure 9 | Song rates of juvenile birds before and after their first tutoring 706 

sessions. 707 

a, Ratio of song bouts produced before and after the first tutoring session in control birds (black, 708 

n = 6) and in birds that received injection of 6-OHDA injections into HVC several days prior 709 

to the tutoring session or that were infused with DA blockers into HVC immediately before 710 

and during the tutoring session (red, n = 6) . Error bars indicate mean ± SEM. 711 

 712 

 713 

Extended Data Figure 10 | Summary diagram. 714 

a, The song of a live adult tutor (i.e., a suitable model) activates auditory afferents and DA-715 

releasing PAG afferents to HVC, leading to potentiation and stabilization of auditory synapses 716 

in HVC. This plastic change forms temporally precise coding of the tutor songs and increases 717 

the occurrence of bursting activity in HVC, which rapidly alters temporal and spectral features 718 

of the pupil's vocalization in manner that drives imitation. b, Playback of an adult male song 719 

without social cues (i.e., extraneous sound) only activates auditory afferents in HVC. The 720 

activation of these auditory inputs by itself can neither alter HVC activity nor drive song 721 

learning, similar to the condition where DA signaling in the pupil’s HVC is blocked during the 722 

juvenile’s exposure to a live, singing tutor.  723 



  724 



Supplementary Video 1 | Social interaction of a pupil with vehicle in HVC 725 

Social interaction of a juvenile bird that received infusion of vehicle into HVC during a tutoring 726 

session. 727 

https://www.dropbox.com/s/xzftjpq1z8ebutg/  728 

 729 

Supplementary Video 2 | Social interaction of a pupil with DA blockers in HVC 730 

Social interaction of a juvenile bird that received infusion of DA blockers into HVC during a 731 

tutoring session. 732 

https://www.dropbox.com/s/u7faje7dgawptpi/  733 

 734 

Supplementary Video 3 | Social interaction of a pupil with muscimol in PAG 735 

Social interaction of a juvenile bird that received infusion of muscimol into PAG during a 736 

tutoring session.  737 

https://www.dropbox.com/s/9vy9pkgh52vuc0i/ 738 

 739 


