171 research outputs found
Protein Tyrosine Phosphatase 1B A Potential Leptin Resistance Factor of Obesity
AbstractIndirect evidence implicates leptin resistance in the pathogenesis of the lipotoxicity that complicates obesity and results in the metabolic syndrome. In this issue of Developmental Cell, two groups identify protein tyrosine phosphatase 1B (PTP1B) as a cause of leptin resistance through dephosphorylation of Jak2
Follow-up study of sensory-motor polyneuropathy in Type 1 (insulin-dependent) diabetic subjects after simultaneous pancreas and kidney transplantation and after graft rejection
The influence of successful simultaneous pancreas and kidney transplantation on peripheral polyneuropathy was investigated in 53 patients for a mean observation period of 40.3 months. Seventeen patients were followed-up for more than 3 years. Symptoms and signs were assessed every 6 months using a standard questionnaire, neurological examination and measurement of sensory and motor nerve conduction velocities. While symptoms of polyneuropathy improved (pain, paraesthesia, cramps, restless-legs) and nerve conduction velocity increased, there was no change of clinical signs (sensation, muscle-force, tendon-reflexes). Following kidney-graft-rejection there was a slight decrease of nerve conduction verlocity during the first year, which was not statistically significant. Following pancreas-graft rejection there was no change of nerve conduction velocity during the first year. Comparing the maximum nerve conduction velocity of the patients with pancreas-graft-rejection to the nerve conduction velocities of these patients at the end of the study, there was a statistically significant decrease of 6.5 m/s.
In conclusion, we believe that strict normalization of glucose metabolism alters the progressive course of diabetic polyneuropathy. It may be stabilized or partly reversed after successful grafting even in long-term diabetic patients
Demagnetization via Nucleation of the Nonequilibrium Metastable Phase in a Model of Disorder
We study both analytically and numerically metastability and nucleation in a
two-dimensional nonequilibrium Ising ferromagnet. Canonical equilibrium is
dynamically impeded by a weak random perturbation which models homogeneous
disorder of undetermined source. We present a simple theoretical description,
in perfect agreement with Monte Carlo simulations, assuming that the decay of
the nonequilibrium metastable state is due, as in equilibrium, to the
competition between the surface and the bulk. This suggests one to accept a
nonequilibrium "free-energy" at a mesoscopic/cluster level, and it ensues a
nonequilibrium "surface tension" with some peculiar low-T behavior. We
illustrate the occurrence of intriguing nonequilibrium phenomena, including:
(i) Noise-enhanced stabilization of nonequilibrium metastable states; (ii)
reentrance of the limit of metastability under strong nonequilibrium
conditions; and (iii) resonant propagation of domain walls. The cooperative
behavior of our system may also be understood in terms of a Langevin equation
with additive and multiplicative noises. We also studied metastability in the
case of open boundaries as it may correspond to a magnetic nanoparticle. We
then observe burst-like relaxation at low T, triggered by the additional
surface randomness, with scale-free avalanches which closely resemble the type
of relaxation reported for many complex systems. We show that this results from
the superposition of many demagnetization events, each with a well- defined
scale which is determined by the curvature of the domain wall at which it
originates. This is an example of (apparent) scale invariance in a
nonequilibrium setting which is not to be associated with any familiar kind of
criticality.Comment: 26 pages, 22 figure
A review of Monte Carlo simulations of polymers with PERM
In this review, we describe applications of the pruned-enriched Rosenbluth
method (PERM), a sequential Monte Carlo algorithm with resampling, to various
problems in polymer physics. PERM produces samples according to any given
prescribed weight distribution, by growing configurations step by step with
controlled bias, and correcting "bad" configurations by "population control".
The latter is implemented, in contrast to other population based algorithms
like e.g. genetic algorithms, by depth-first recursion which avoids storing all
members of the population at the same time in computer memory. The problems we
discuss all concern single polymers (with one exception), but under various
conditions: Homopolymers in good solvents and at the point, semi-stiff
polymers, polymers in confining geometries, stretched polymers undergoing a
forced globule-linear transition, star polymers, bottle brushes, lattice
animals as a model for randomly branched polymers, DNA melting, and finally --
as the only system at low temperatures, lattice heteropolymers as simple models
for protein folding. PERM is for some of these problems the method of choice,
but it can also fail. We discuss how to recognize when a result is reliable,
and we discuss also some types of bias that can be crucial in guiding the
growth into the right directions.Comment: 29 pages, 26 figures, to be published in J. Stat. Phys. (2011
A Historiometric Examination of Machiavellianism and a New Taxonomy of Leadership
Although researchers have extensively examined the relationship between charismatic leadership and Machiavellianism (Deluga, 2001; Gardner & Avolio, 1995; House & Howell, 1992), there has been a lack of investigation of Machiavellianism in relation to alternative forms of outstanding leadership. Thus, the purpose of this investigation was to examine the relationship between Machiavellianism and a new taxonomy of outstanding leadership comprised of charismatic, ideological, and pragmatic leaders. Using an historiometric approach, raters assessed Machiavellianism via the communications of 120 outstanding leaders in organizations across the domains of business, political, military, and religious institutions. Academic biographies were used to assess twelve general performance measures as well as twelve general controls and five communication specific controls. The results indicated that differing levels of Machiavellianism is evidenced across the differing leader types as well as differing leader orientation. Additionally, Machiavellianism appears negatively related to performance, though less so when type and orientation are taken into account.Yeshttps://us.sagepub.com/en-us/nam/manuscript-submission-guideline
History of clinical transplantation
How transplantation came to be a clinical discipline can be pieced together by perusing two volumes of reminiscences collected by Paul I. Terasaki in 1991-1992 from many of the persons who were directly involved. One volume was devoted to the discovery of the major histocompatibility complex (MHC), with particular reference to the human leukocyte antigens (HLAs) that are widely used today for tissue matching.1 The other focused on milestones in the development of clinical transplantation.2 All the contributions described in both volumes can be traced back in one way or other to the demonstration in the mid-1940s by Peter Brian Medawar that the rejection of allografts is an immunological phenomenon.3,4 © 2008 Springer New York
- …