23 research outputs found

    Hysteresis of Electronic Transport in Graphene Transistors

    Full text link
    Graphene field effect transistors commonly comprise graphene flakes lying on SiO2 surfaces. The gate-voltage dependent conductance shows hysteresis depending on the gate sweeping rate/range. It is shown here that the transistors exhibit two different kinds of hysteresis in their electrical characteristics. Charge transfer causes a positive shift in the gate voltage of the minimum conductance, while capacitive gating can cause the negative shift of conductance with respect to gate voltage. The positive hysteretic phenomena decay with an increase of the number of layers in graphene flakes. Self-heating in helium atmosphere significantly removes adsorbates and reduces positive hysteresis. We also observed negative hysteresis in graphene devices at low temperature. It is also found that an ice layer on/under graphene has much stronger dipole moment than a water layer does. Mobile ions in the electrolyte gate and a polarity switch in the ferroelectric gate could also cause negative hysteresis in graphene transistors. These findings improved our understanding of the electrical response of graphene to its surroundings. The unique sensitivity to environment and related phenomena in graphene deserve further studies on nonvolatile memory, electrostatic detection and chemically driven applications.Comment: 13 pages, 6 Figure

    Technique for the Dry Transfer of Epitaxial Graphene onto Arbitrary Substrates

    Full text link
    In order to make graphene technologically viable, the transfer of graphene films to substrates appropriate for specific applications is required. We demonstrate the dry transfer of epitaxial graphene (EG) from the C-face of 4H-SiC onto SiO2, GaN and Al2O3 substrates using a thermal release tape. We further report on the impact of this process on the electrical properties of the EG films. This process enables EG films to be used in flexible electronic devices or as optically transparent contacts.Comment: 8 pages, 4 figures and supplementary info regarding procedure for transfe

    Conversion of self-assembled monolayers into nanocrystalline graphene: Structure and electric transport

    Full text link
    Graphene-based materials have been suggested for applications ranging from nanoelectronics to nanobiotechnology. However, the realization of graphene-based technologies will require large quantities of free-standing two-dimensional (2D) carbon materials with tuneable physical and chemical properties. Bottom-up approaches via molecular self-assembly have great potential to fulfil this demand. Here, we report on the fabrication and characterization of graphene made by electron-radiation induced cross-linking of aromatic self-assembled monolayers (SAMs) and their subsequent annealing. In this process, the SAM is converted into a nanocrystalline graphene sheet with well defined thickness and arbitrary dimensions. Electric transport data demonstrate that this transformation is accompanied by an insulator to metal transition that can be utilized to control electrical properties such as conductivity, electron mobility and ambipolar electric field effect of the fabricated graphene sheets. The suggested route opens broad prospects towards the engineering of free-standing 2D carbon materials with tuneable properties on various solid substrates and on holey substrates as suspended membranes.Comment: 30 pages, 5 figure

    Synthesis of linked carbon monolayers: Films, balloons, tubes, and pleated sheets

    No full text
    Because of their potential for use in advanced electronic, nanomechanical, and other applications, large two-dimensional, carbon-rich networks have become an important target to the scientific community. Current methods for the synthesis of these materials have many limitations including lack of molecular-level control and poor diversity. Here, we present a method for the synthesis of two-dimensional carbon nanomaterials synthesized by Mo- and Cu-catalyzed cross-linking of alkyne-containing self-assembled monolayers on SiO2 and Si3N4. When deposited and cross-linked on flat surfaces, spheres, cylinders, or textured substrates, monolayers take the form of these templates and retain their structure on template removal. These nanomaterials can also be transferred from surface to surface and suspended over cavities without tearing. This approach to the synthesis of monolayer carbon networks greatly expands the chemistry, morphology, and size of carbon films accessible for analysis and device applications
    corecore