165 research outputs found

    Cysteamine Suppresses Invasion, Metastasis and Prolongs Survival by Inhibiting Matrix Metalloproteinases in a Mouse Model of Human Pancreatic Cancer

    Get PDF
    Background: Cysteamine, an anti-oxidant aminothiol, is the treatment of choice for nephropathic cystinosis, a rare lysosomal storage disease. Cysteamine is a chemo-sensitization and radioprotection agent and its antitumor effects have been investigated in various tumor cell lines and chemical induced carcinogenesis. Here, we investigated whether cysteamine has anti-tumor and anti-metastatic effects in transplantable human pancreatic cancer, an aggressive metastatic disease. Methodology/Principal Findings: Cysteamine’s anti-invasion effects were studied by matrigel invasion and cell migration assays in 10 pancreatic cancer cell lines. To study mechanism of action, we examined cell viability and matrix metalloproteinases (MMPs) activity in the cysteamine-treated cells. We also examined cysteamine’s anti-metastasis effect in two orthotopic murine models of human pancreatic cancer by measuring peritoneal metastasis and survival of animals. Cysteamine inhibited both migration and invasion of all ten pancreatic cancer cell lines at concentrations (,25 mM) that caused no toxicity to cells. It significantly decreased MMPs activity (IC50 38–460 mM) and zymographic gelatinase activity in a dose dependent manner in vitro and in vivo; while mRNA and protein levels of MMP-9, MMP-12 and MMP-14 were slightly increased using the highest cysteamine concentration. In vivo, cysteamine significantly decreased metastasis in two established pancreatic tumor models, although it did not affect the size of primary tumors. Additionally, cysteamin

    124I-HuCC49deltaCH2 for TAG-72 antigen-directed positron emission tomography (PET) imaging of LS174T colon adenocarcinoma tumor implants in xenograft mice: preliminary results

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><sup>18</sup>F-fluorodeoxyglucose positron emission tomography (<sup>18</sup>F-FDG-PET) is widely used in diagnostic cancer imaging. However, the use of <sup>18</sup>F-FDG in PET-based imaging is limited by its specificity and sensitivity. In contrast, anti-TAG (tumor associated glycoprotein)-72 monoclonal antibodies are highly specific for binding to a variety of adenocarcinomas, including colorectal cancer. The aim of this preliminary study was to evaluate a complimentary determining region (CDR)-grafted humanized C<sub>H</sub>2-domain-deleted anti-TAG-72 monoclonal antibody (HuCC49deltaC<sub>H</sub>2), radiolabeled with iodine-124 (<sup>124</sup>I), as an antigen-directed and cancer-specific targeting agent for PET-based imaging.</p> <p>Methods</p> <p>HuCC49deltaC<sub>H</sub>2 was radiolabeled with <sup>124</sup>I. Subcutaneous tumor implants of LS174T colon adenocarcinoma cells, which express TAG-72 antigen, were grown on athymic Nu/Nu nude mice as the xenograft model. Intravascular (i.v.) and intraperitoneal (i.p.) administration of <sup>124</sup>I-HuCC49deltaC<sub>H</sub>2 was then evaluated in this xenograft mouse model at various time points from approximately 1 hour to 24 hours after injection using microPET imaging. This was compared to i.v. injection of <sup>18</sup>F-FDG in the same xenograft mouse model using microPET imaging at 50 minutes after injection.</p> <p>Results</p> <p>At approximately 1 hour after i.v. injection, <sup>124</sup>I-HuCC49deltaC<sub>H</sub>2 was distributed within the systemic circulation, while at approximately 1 hour after i.p. injection, <sup>124</sup>I-HuCC49deltaC<sub>H</sub>2 was distributed within the peritoneal cavity. At time points from 18 hours to 24 hours after i.v. and i.p. injection, <sup>124</sup>I-HuCC49deltaC<sub>H</sub>2 demonstrated a significantly increased level of specific localization to LS174T tumor implants (p = 0.001) when compared to the 1 hour images. In contrast, approximately 50 minutes after i.v. injection, <sup>18</sup>F-FDG failed to demonstrate any increased level of specific localization to a LS174T tumor implant, but showed the propensity toward more nonspecific uptake within the heart, Harderian glands of the bony orbits of the eyes, brown fat of the posterior neck, kidneys, and bladder.</p> <p>Conclusions</p> <p>On microPET imaging, <sup>124</sup>I-HuCC49deltaC<sub>H</sub>2 demonstrates an increased level of specific localization to tumor implants of LS174T colon adenocarcinoma cells in the xenograft mouse model on delayed imaging, while <sup>18</sup>F-FDG failed to demonstrate this. The antigen-directed and cancer-specific <sup>124</sup>I-radiolabled anti-TAG-72 monoclonal antibody conjugate, <sup>124</sup>I-HuCC49deltaC<sub>H</sub>2, holds future potential for use in human clinical trials for preoperative, intraoperative, and postoperative PET-based imaging strategies, including fused-modality PET-based imaging platforms.</p

    Self-Radiolysis of Iodobenzene Labeled With I125

    No full text
    WOS: A1985AVR060000

    Local Radiolytic Effectiveness of Auger Electrons of I-125 In Benzene-Iodine Solutions

    No full text
    WOS: A1987L14850000
    corecore