17 research outputs found

    Learning a goal-oriented model for energy efficient adaptive applications in data centers

    Get PDF
    This work has been motivated by the growing demand of energy coming from the IT sector. We propose a goal-oriented approach where the state of the system is assessed using a set of indicators. These indicators are evaluated against thresholds that are used as goals of our system. We propose a self-adaptive context-aware framework, where we learn both the relations existing between the indicators and the effect of the available actions over the indicators state. The system is also able to respond to changes in the environment, keeping these relations updated to the current situation. Results have shown that the proposed methodology is able to create a network of relations between indicators and to propose an effective set of repair actions to contrast suboptimal states of the data center. The proposed framework is an important tool for assisting the system administrator in the management of a data center oriented towards Energy Efficiency (EE), showing him the connections occurring between the sometimes contrasting goals of the system and suggesting the most likely successful repair action(s) to improve the system state, both in terms of EE and QoS

    Semi-supervised generative adversarial networks with spatial coevolution for enhanced image generation and classification

    Get PDF
    Funding for open access charge: Universidad de Málaga / CBU

    Left camera Right camera

    No full text
    vergence with smooth pursuit and saccadic camera movements for controlling an active vision hea

    Evaluating efficacy of indoor non-pharmaceutical interventions against COVID-19 outbreaks with a coupled spatial-SIR agent-based simulation framework

    No full text
    AbstractContagious respiratory diseases, such as COVID-19, depend on sufficiently prolonged exposures for the successful transmission of the underlying pathogen. It is important that organizations evaluate the efficacy of non-pharmaceutical interventions aimed at mitigating viral transmission among their personnel. We have developed a operational risk assessment simulation framework that couples a spatial agent-based model of movement with an agent-based SIR model to assess the relative risks of different intervention strategies. By applying our model on MIT’s Stata center, we assess the impacts of three possible dimensions of intervention: one-way vs unrestricted movement, population size allowed onsite, and frequency of leaving designated work location for breaks. We find that there is no significant impact made by one-way movement restrictions over unrestricted movement. Instead, we find that reducing the frequency at which individuals leave their workstations combined with lowering the number of individuals admitted below the current recommendations lowers the likelihood of highly connected individuals within the contact networks that emerge, which in turn lowers the overall risk of infection. We discover three classes of possible interventions based on their epidemiological effects. By assuming a direct relationship between data on secondary attack rates and transmissibility in the agent-based SIR model, we compare relative infection risk of four respiratory illnesses, MERS, SARS, COVID-19, and Measles, within the simulated area, and recommend appropriate intervention guidelines.</jats:p

    FlexGP

    No full text
    We describe FlexGP, the first Genetic Programming system to perform symbolic regression on large-scale datasets on the cloud via massive data-parallel ensemble learning. FlexGP provides a decentralized, fault tolerant parallelization framework that runs many copies of Multiple Regression Genetic Programming, a sophisticated symbolic regression algorithm, on the cloud. Each copy executes with a different sample of the data and different parameters. The framework can create a fused model or ensemble on demand as the individual GP learners are evolving. We demonstrate our framework by deploying 100 independent GP instances in a massive data-parallel manner to learn from a dataset composed of 515K exemplars and 90 features, and by generating a competitive fused model in less than 10 minutes.Li Ka Shing FoundationGE Global Research Cente

    The Robust Malware Detection Challenge and Greedy Random Accelerated Multi-Bit Search

    No full text
    Training classifiers that are robust against adversarially modified examples is becoming increasingly important in practice. In the field of malware detection, adversaries modify malicious binary files to seem benign while preserving their malicious behavior. We report on the results of a recently held robust malware detection challenge. There were two tracks in which teams could participate: the attack track asked for adversarially modified malware samples and the defend track asked for trained neural network classifiers that are robust to such modifications. The teams were unaware of the attacks/defenses they had to detect/evade. Although only 9 teams participated, this unique setting allowed us to make several interesting observations. We also present the challenge winner: GRAMS, a family of novel techniques to train adversarially robust networks that preserve the intended (malicious) functionality and yield high-quality adversarial samples. These samples are used to iteratively train a robust classifier. We show that our techniques, based on discrete optimization techniques, beat purely gradient-based methods. GRAMS obtained first place in both the attack and defend tracks of the competition

    Adversarial genetic programming for cyber security: a rising application domain where GP matters

    No full text
    Abstract Cyber security adversaries and engagements are ubiquitous and ceaseless. We delineate Adversarial Genetic Programming for Cyber Security, a research topic that, by means of genetic programming (GP), replicates and studies the behavior of cyber adversaries and the dynamics of their engagements. Adversarial Genetic Programming for Cyber Security encompasses extant and immediate research efforts in a vital problem domain, arguably occupying a position at the frontier where GP matters. Additionally, it prompts research questions around evolving complex behavior by expressing different abstractions with GP and opportunities to reconnect to the machine learning, artificial life, agent-based modeling and cyber security communities. We present a framework called RIVALS which supports the study of network security arms races. Its goal is to elucidate the dynamics of cyber networks under attack by computationally modeling and simulating them

    The Robust Malware Detection Challenge and Greedy Random Accelerated Multi-Bit Search

    No full text
    Training classifiers that are robust against adversarially modified examples is becoming increasingly important in practice. In the field of malware detection, adversaries modify malicious binary files to seem benign while preserving their malicious behavior. We report on the results of a recently held robust malware detection challenge. There were two tracks in which teams could participate: the attack track asked for adversarially modified malware samples and the defend track asked for trained neural network classifiers that are robust to such modifications. The teams were unaware of the attacks/defenses they had to detect/evade. Although only 9 teams participated, this unique setting allowed us to make several interesting observations. We also present the challenge winner: GRAMS, a family of novel techniques to train adversarially robust networks that preserve the intended (malicious) functionality and yield high-quality adversarial samples. These samples are used to iteratively train a robust classifier. We show that our techniques, based on discrete optimization techniques, beat purely gradient-based methods. GRAMS obtained first place in both the attack and defend tracks of the competition.Cyber SecurityAlgorithmic
    corecore