26 research outputs found

    エネルギー伝達機構を利用した新材料の創成と機能性の発現

    Get PDF

    Fabrication and subband gap optical properties of silicon supersaturated with chalcogens by ion implantation and pulsed laser melting

    No full text
    Topographically flat, single crystal silicon supersaturated with the chalcogens S, Se, and Te was prepared by ion implantation followed by pulsed laser melting and rapid solidification. The influences of the number of laser shots on the atomic and carrier concentration-depth profiles were measured with secondary ion mass spectrometry and spreading resistance profiling, respectively. We found good agreement between the atomic concentration-depth profiles obtained from experiments and a one-dimensional model for plane-front melting, solidification, liquid-phase diffusion, with kinetic solute trapping, and surface evaporation. Broadband subband gap absorption is exhibited by all dopants over a wavelength range from 1 to 2.5 microns. The absorption did not change appreciably with increasing number of laser shots, despite a measurable loss of chalcogen and of electronic carriers after each shot.One of the authors M.T. acknowledges the financial support of the Fulbright Program. This research was supported in part by the U.S. Army ARDEC under Contract No. W15QKN-07- P-0092

    Temperature dependence of time-resolved luminescence spectra for 1D excitons in single-walled carbon nanotubes in micelles

    Get PDF
    Abstract We have investigated exciton luminescence spectra, decay behaviors, and their temperature dependence in singlewalled carbon nanotubes in micelles. The temperature dependence of luminescence spectra can be explained by the onephonon process associated with the radial breathing mode in the single-walled carbon nanotube. The luminescence decay behavior suggests that the signal is composed of various exponential decays with different decay times. These experimental results are explained by the existence of trapping centers on the nanotube.

    Hierarchical Structure of TiO<sub>2</sub> Nano-aggregates Prepared by Pulsed Laser Ablation in Background Gas

    No full text
    corecore