2,048 research outputs found

    String Entanglement and D-branes as Pure States

    Full text link
    We study the entanglement of closed strings degrees of freedom in order to investigate the microscopic structure and statistics of objects as D-branes. By considering the macroscopic pure state (MPS) limit, whenever the entanglement entropy goes to zero (in such a way that the macroscopic properties of the state are preserved), we show that boundary states may be recovered in this limit and, furthermore, the description through closed string (perturbative) degrees of freedom collapses. We also show how the thermal properties of branes and closed strings could be described by this model, and it requires that dissipative effects be taken into account. Extensions of the MPS analysis to more general systems at finite temperature are finally emphasized.Comment: 14 pages. Minor improvements. Published in Phys. Rev.

    Topological Discrete Algebra, Ground State Degeneracy, and Quark Confinement in QCD

    Full text link
    Based on the permutation group formalism, we present a discrete symmetry algebra in QCD. The discrete algebra is hidden symmetry in QCD, which is manifest only on a space-manifold with non-trivial topology. Quark confinement in the presence of the dynamical quarks is discussed in terms of the discrete symmetry algebra. It is shown that the quark deconfinement phase has the ground state degeneracy depending on the topology of the space, which gives a gauge-invariant distinction between the confinement and deconfinement phases. We also point out that new quantum numbers relating to the fractional quantum Hall effect exist in the deconfinement phase.Comment: 11 pages, 1 figur

    Dynamical mapping method in nonrelativistic models of quantum field theory

    Get PDF
    The solutions of Heisenberg equations and two-particles eigenvalue problems for nonrelativistic models of current-current fermion interaction and N,ΘN, \Theta model are obtained in the frameworks of dynamical mapping method. The equivalence of different types of dynamical mapping is shown. The connection between renormalization procedure and theory of selfadjoint extensions is elucidated.Comment: 14 page

    Interior gap superfluidity in a two-component Fermi gas of atoms

    Full text link
    A new superfluid phase in Fermi matter, termed as "interior gap" (IG) or "breached pair", has been recently predicted by Liu and Wilczek [Phys.Rev.Lett. {\bf 90}, 047002 (2003)]. This results from pairing between fermions of two species having essentially different Fermi surfaces. Using a nonperturbative variational approach, we analyze the features, such as energy gap, momentum distributions, and elementary excitations associated with the predicted phase. We discuss possible realization of this phase in two-component Fermi gases in an optical trap.Comment: 5 page

    BCS BEC crossover and phase structure of relativistic system: a variational approach

    Full text link
    We investigate here the BCS BEC crossover in relativistic systems using a variational construct for the ground state and the minimization of the thermodynamic potential. This is first studied in a four fermion point interaction model and with a BCS type ansatz for the ground state with fermion pairs. It is shown that the antiparticle degrees of freedom play an important role in the BCS BEC crossover physics, even when the ratio of fermi momentum to the mass of the fermion is small. We also consider the phase structure for the case of fermion pairing with imbalanced populations. Within the ansatz, thermodynamically stable gapless modes for both fermions and anti fermions are seen for strong coupling in the BEC regime. We further investigate the effect of fluctuations of the condensate field by treating it as a dynamical field and generalize the BCS ansatz to include quanta of the condensate field also in a boson fermion model with quartic self interaction of the condensate field. It is seen that the critical temperature decreases with inclusion of fluctuations.Comment: 18 pages, 13 figures, one more section added, title modified, version to appear in Phys Rev

    Superconductivity in CVD Diamond Thin Film Well-Above Liquid Helium Temperature

    Full text link
    Diamond has always been adored as a jewel. Even more fascinating is its outstanding physical properties; it is the hardest material known in the world with the highest thermal conductivity. Meanwhile, when we turn to its electrical properties, diamond is a rather featureless electrical insulator. However, with boron doping, it becomes a p-type semiconductor, with boron acting as a charge acceptor. Therefore the recent news of superconductivity in heavily boron-doped diamond synthesized by high pressure sintering was received with considerable surprise. Opening up new possibilities for diamond-based electrical devices, a systematic investigation of these phenomena clearly needs to be achieved. Here we show unambiguous evidence of superconductivity in a diamond thin film deposited by a chemical vapor deposition (CVD) method. Furthermore the onset of the superconducting transition is found to be 7.4K, which is higher than the reported value in ref(7) and well above helium liquid temperature. This finding establishes the superconductivity to be a universal property of boron-doped diamond, demonstrating that device application is indeed a feasible challenge.Comment: 6 pages, 3 figure

    Action and Hamiltonian for eternal black holes

    Full text link
    We present the Hamiltonian, quasilocal energy, and angular momentum for a spacetime region spatially bounded by two timelike surfaces. The results are applied to the particular case of a spacetime representing an eternal black hole. It is shown that in the case when the boundaries are located in two different wedges of the Kruskal diagram, the Hamiltonian is of the form H=H+HH = H_+ - H_-, where H+H_+ and HH_- are the Hamiltonian functions for the right and left wedges respectively. The application of the obtained results to the thermofield dynamics description of quantum effects in black holes is briefly discussed.Comment: 24 pages, Revtex, 5 figures (available upon request

    Color superconducting 2SC+s quark matter and gapless modes at finite temperatures

    Full text link
    We investigate the phase diagram of color superconducting quark matter with strange quarks (2SC+s quark matter) in beta equliibrium at zero as well as finite temperatures within a Nambu-Jona-Lasinio model. The variational method as used here allows us to investigate simultaneous formation of condensates in quark--antiquark as well as in diquark channels. Color and electric charge neutrality conditions are imposed in the calculation of the thermodynamic potential. Medium dependance of strange quark mass plays a sensitve role in maintaining charge neutrality conditions. At zero temperature the system goes from gapless phase to usual BCS phase through an intermediate normal phase as density is increased. The gapless modes show a smooth behaviour with respect to temperature vanishing above a critical temperature which is larger than the BCS transition temperature. We observe a sharp transition from gapless superconducting phase to the BCS phase as density is increased for the color neutral matter at zero temperature. As temperature is increased this however becomes a smooth transition.Comment: 18 pages, 14 figure

    Lepton charge and neutrino mixing in pion decay processes

    Full text link
    We consider neutrino mixing and oscillations in quantum field theory and compute the neutrino lepton charge in decay processes where neutrinos are generated. We also discuss the proper definition of flavor charge and states and clarify the issues of the possibility of different mass parameters in field mixing.Comment: 13 page

    Particle-number conservation in static-path approximation for thermal superfluid systems

    Full text link
    By applying particle-number projection to the static-path approximation (SPA), the heat capacity and the breakdown of pairing correlations are investigated in the thermally excited, superfluid systems 172Yb, 94Mo, and 56Fe. For the heavy nucleus 172Yb, the heat capacities in both the SPA and the number-projected SPA (NPSPA) exhibit an S shape; the difference between the SPA and NPSPA heat-capacity curves is not very large and the particle-number projection thereby enhances the S shape already seen in the SPA. The temperature at which the S-shape of heat capacity curve occurs parallels the temperature of the breakdown of pairing correlations as indicated by the effective pairing gap. However, for the comparatively lighter nuclei 94Mo and 56Fe, the SPA does not produce an S-shaped heat capacity on its own; only after particle-number projection the S shape appears in the heat-capacity curve. For 94Mo, we compare the NPSPA result with thermal odd-even mass differences, which are regarded as a direct measure of the pairing gap.Comment: 7 pages, 5 figures, accepted for publication in Phys. Rev.
    corecore