3 research outputs found

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Atypical MR lenticular signal change in infantile isovaleric acidemia

    No full text
    Isovaleric acidemia (IVA) is an inborn error of branched chain amino acid metabolism that may manifest as acute neonatal metabolic acidosis or as chronic intermittent form with developmental delay or recurrent episodes of acute metabolic acidosis. Early diagnosis is the key to prevent morbidity and mortality. Brain imaging abnormalities are rarely described in IVA. We report a case of chronic intermittent IVA with acute presentation in a 4-month-old infant who presented with acute metabolic acidosis. Brain magnetic resonance imaging (MRI) revealed symmetric signal intensity changes in bilateral lentiform nuclei with an unreported T1-weighted (T1W) symmetric hyperintense ring-like appearance in bilateral putamen
    corecore