1,177 research outputs found

    The structural and functional integrity of peripheral nerves depends on the glial-derived signal desert hedgehog

    Get PDF
    We show that desert hedgehog ( dhh), a signaling molecule expressed by Schwann cells, is essential for the structural and functional integrity of the peripheral nerve. Dhh-null nerves display multiple abnormalities that affect myelinating and nonmyelinating Schwann cells, axons, and vasculature and immune cells. Myelinated fibers of these mice have a significantly increased ( more than two times) number of Schmidt-Lanterman incisures ( SLIs), and connexin 29, a molecular component of SLIs, is strongly upregulated. Crossing dhh-null mice with myelin basic protein ( MBP)-deficient shiverer mice, which also have increased SLI numbers, results in further increased SLIs, suggesting that Dhh and MBP control SLIs by different mechanisms. Unmyelinated fibers are also affected, containing many fewer axons per Schwann cell in transverse profiles, whereas the total number of unmyelinated axons is reduced by approximately one-third. In dhh-null mice, the blood-nerve barrier is permeable and neutrophils and macrophage numbers are elevated, even in uninjured nerves. Dhh-null nerves also lack the largest-diameter myelinated fibers, have elevated numbers of degenerating myelinated axons, and contain regenerating fibers. Transected dhh nerves degenerate faster than wild-type controls. This demonstrates that a single identified glial signal, Dhh, plays a critical role in controlling the integrity of peripheral nervous tissue, in line with its critical role in nerve sheath development ( Parmantier et al., 1999). The complexity of the defects raises a number of important questions about the Dhh-dependent cell-cell signaling network in peripheral nerves

    Combinatorial synthesis of oxysulfides in the lanthanum-bismuth-copper system

    Get PDF
    Establishing synthesis methods for a target material constitutes a grand challenge in materials research, which is compounded with use-inspired specifications on the format of the material. Solar photochemistry using thin film materials is a promising technology for which many complex materials are being proposed, and the present work describes application of combinatorial methods to explore the synthesis of predicted La–Bi–Cu oxysulfide photocathodes, in particular alloys of LaCuOS and BiCuOS. The variation in concentration of three cations and two anions in thin film materials, and crystallization thereof, is achieved by a combination of reactive sputtering and thermal processes including reactive annealing and rapid thermal processing. Composition and structural characterization establish composition-processing-structure relationships that highlight the breadth of processing conditions required for synthesis of LaCuOS and BiCuOS. The relative irreducibility of La oxides and limited diffusion indicate the need for high temperature processing, which conflicts with the temperature limits for mitigating evaporation of Bi and S. Collectively the results indicate that alloys of these phases will require reactive annealing protocols that are uniquely tailored to each composition, motivating advancement of dynamic processing capabilities to further automate discovery of synthesis routes

    Pressure-induced changes in the magnetic and valence state of EuFe2As2

    Full text link
    We present the results of electrical resistivity, ac specific heat, magnetic susceptibility, X-ray absorption spectroscopy (XAS) and X-ray magnetic circular dichroism (XMCD) of the ternary iron arsenide EuFe2As2 single crystal under pressure. Applying pressure leads to a continuous suppression of the antiferromagnetism associated with Fe moments and the antiferromagnetic transition temperature becomes zero in the vicinity of a critical pressure Pc ~2.5-2.7 GPa. Pressure-induced re-entrant superconductivity, which is highly sensitive to the homogeneity of the pressure, only appears in the narrow pressure region in the vicinity of Pc due to the competition between superconductivity and the antiferromagnetic ordering of Eu2+ moments. The antiferromagnetic state of Eu2+ moments changes to the ferromagnetic state above 6 GPa. We also found that the ferromagnetic order is suppressed with further increasing pressure, which is connected with a valence change of Eu ions.Comment: 7 pages, 7 figures, accepted for publication in Phys. Rev.

    The enhancement of ferromagnetism in uniaxially stressed diluted magnetic semiconductors

    Full text link
    We predict a new mechanism of enhancement of ferromagnetic phase transition temperature TcT_c in uniaxially stressed diluted magnetic semiconductors (DMS) of p-type. Our prediction is based on comparative studies of both Heisenberg (inherent to undistorted DMS with cubic lattice) and Ising (which can be applied to strongly enough stressed DMS) models in a random field approximation permitting to take into account the spatial inhomogeneity of spin-spin interaction. Our calculations of phase diagrams show that area of parameters for existence of DMS-ferromagnetism in Ising model is much larger than that in Heisenberg model.Comment: Accepted for publication in Phys. Rev.

    Closed trajectories of a particle model on null curves in anti-de Sitter 3-space

    Full text link
    We study the existence of closed trajectories of a particle model on null curves in anti-de Sitter 3-space defined by a functional which is linear in the curvature of the particle path. Explicit expressions for the trajectories are found and the existence of infinitely many closed trajectories is proved.Comment: 12 pages, 1 figur

    The performance of thin NaI(Tl) scintillator plate for dark matter search

    Full text link
    A thin (0.05cm) and wide area (5cmX5cm) NaI(Tl) scintillator was developed. The performance of the thin NaI(Tl) plate, energy resolution, single photoelectron energy and position sensitivity were tested. An excellent energy resolution of 20% (FWHM) at 60keV was obtained. The single photoelectron energy was calculated to be approximately 0.42 0.02keV. Position information in the 5cmx5cm area of the detector was also obtained by analyzing the ratio of the number of photons collected at opposite ends of the detector. The position resolution was obtained to be 1cm (FWHM) in the 5cmx5cm area.Comment: 10 pages. Accepted to Journal of Physical Society of Japa

    Sharp lines in the absorption edge of EuTe and Pb0.1_{0.1}Eu0.9_{0.9}Te in high magnetic fields

    Full text link
    The optical absorption spectra in the region of the \fd transition energies of epitaxial layers of of EuTe and \PbEuTe, grown by molecular beam epitaxy, were studied using circularly polarized light, in the Faraday configuration. Under \sigmam polarization a sharp symmetric absorption line (full width at half-maximum 0.041 eV) emerges at the low energy side of the band-edge absorption, for magnetic fields intensities greater than 6 T. The absorption line shows a huge red shift (35 meV/T) with increasing magnetic fields. The peak position of the absorption line as a function of magnetic field is dominated by the {\em d-f} exchange interaction of the excited electron and the \Euion spins in the lattice. The {\em d-f} exchange interaction energy was estimated to be JdfS=0.15±0.01J_{df}S=0.15\pm 0.01 eV. In \PbEuTe the same absorption line is detected, but it is broader, due to alloy disorder, indicating that the excitation is localized within a finite radius. From a comparison of the absorption spectra in EuTe and \PbEuTe the characteristic radius of the excitation is estimated to be 10\sim 10\AA.Comment: Journal of Physics: Condensed Matter (2004, at press

    Chemical modification at and within nanopowders: Synthesis of core‐shell Al2O3@TiON nanopowders via nitriding nano‐(TiO2)0.43(Al2O3)0.57 powders in NH3

    Full text link
    Here, we demonstrate the potential utility of using chemical modification to reorganize metastable nanoparticles into nanostructured nanoparticles without coincidentally inducing extensive necking/sintering. The motivation for this effort derives from the concept that chemical reduction in a single component in a mixed‐metal nanoparticle will create segregated islands of a second immiscible phase. Given the very high chemical energies inherent in nanoparticles, the formation of even smaller islands of a second phase can be anticipated to lead to extremely high interfacial energies that may drive these islands to diffuse to cores or surfaces to form core‐shell structures that minimize such interfacial energies. Thus, ammonolysis of (TiO2)0.43(Al2O3)0.57 composition nanopowders where both elements are approximately uniformly mixed at atomic length scales, under selected conditions (1000°C) for various periods of time at constant NH3 flow rates leads primarily to the reduction in the Ti species to form TiN or TiON which then appears to diffuse to the surface of the particles. The final products consist of Al2O3@TiON core‐shell nanopowders that remain mostly unaggregated pointing to a new mechanism for modifying nanopowder chemistries and physical properties.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/142336/1/jace15303_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/142336/2/jace15303.pd
    corecore