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1. Introduction

It is well known that a surface of constant mean curvature in a space form has a 1-parameter
family of local isometric deformations preserving the principal curvature functions. If such a local
deformation can be extended globally, the surface is calledH-deformable. We denote byH3(�c2)
the hyperbolic 3-space of constant curvature�c2. It is well known that surfaces of constant mean
curvature c have quite similar properties to minimal surfaces in R3, in particular, they have an
analogue of the Weierstrass representation called the Bryant representation. A complete minimal
surface of �nite total curvature in R3 is H-deformable if and only if it is rational. However, for
CMC-c surfaces in H3(�c2), H-deformability is independent of the rationality, and only a few
such examples are known (c.f. [UY3]).

Recently, the �rst author [M] gave a method, called the UP-iteration, for constructing new
rational minimal surfaces of genus zero from a given rational minimal surface. In this paper,
we shall give an analogue of it for CMC-c surfaces in hyperbolic 3-space H3(�c2), and give
countably many non-trivial families of new complete H-deformable CMC-c surfaces of �nite
total curvature in H3(�c2). The hyperbolic 3-space H3(�c2) can be realized as the Poincare
ball of radius 1=c. The original UP-iteration can be viewed as the limit of this hyperbolic
analogue as c! 0.

2. Preliminaries

Let Herm(2) be the set of 2-dimensional Hermitian matrices. The hyperbolic 3-space can be
expressed as ([Bry])

H3(�c2) = fX 2 Herm(2) ; det(X) = 1=c2; trace(X) > 0g:

Let f : M ! H3(�c2) be a conformal CMC-c immersion. We denote by ~M the universal
covering space of M . There exists a null holomorphic immersion

F =

�
A B
C D

�
: ~M ! PSL(2;C)

such that f = (1=c)FF �, where PSL(2;C) = SL(2;C)=f�1g and `null' means that the pull-back
by F of the bi-invariant metric on PSL(2;C) vanishes ([Bry]). We call the null holomorphic im-
mersion F :M ! PSL(2;C) the lift of f . The lift F has an ambiguity of the right multiplication
of the constant matrix in SU(2). Since F is null, it satis�es the identity

det(F�1F 0) = 0;(1)

where F 0 = dF=dz, and z is a local complex coordinate.
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For a CMC-c immersion f , the hyperbolic Gauss map G and the secondary Gauss map g are
de�ned as follows (See [UY4]):

G :=
A0

C 0
=
B0

D0
=
�#11

�#21
=
�#12

�#22
;(2)

g := �
D0

C 0
= �

B0

A0
=
�11
�21

=
�12
�22

;(3)

where (�ij) = F�1F 0 and (�#ij ) = F (F�1)0 = �F 0F�1. The hyperbolic Gauss map G is single

valued on M , but the secondary Gauss map g is de�ned on the universal cover ~M . When we
replace the lift F by Fb�1 (b = (bij) 2 SU(2)), the hyperbolic Gauss map is invariant, but the
secondary Gauss map is changed. The new secondary Gauss map ~g is given by

~g :=
b11g + b12
b21g + b22

:(4)

The geometric meanings of G and g are as follows: Identify the ideal boundary S2 of H3(�c2)
with C[ f1g by stereographic projection. Then the normal geodesic ray emanating from each
point z = P of the surface meets the ideal boundary at G(P ) ([Bry]). The (2; 0)-part Q of the
complexi�ed second fundamental form is called the Hopf di�erential of the immersion f . The
second fundamental form h of f is expressed

h = Q+ �Q+ c ds2;(5)

where ds2 is the �rst fundamental form. Moreover, the �rst fundamental form ds2 has the
expression ([UY2])

ds2 = (1 + jgj2)2
����Qdg
����
2

:(6)

The hyperbolic Gauss map G, the secondary Gauss map g and the Hopf di�erential Q satisfy
the following identity ([UY1], [UY3])

Sgdz
2 � SGdz

2 = 2cQ;(7)

where Su denotes the Schwarzian derivative of a holomorphic function u de�ned by

Su :=

�
u00

u0

�0
�

1

2

�
u00

u0

�2
; (u0 =

du

dz
; u00 =

d2u

dz2
):(8)

The pair (g;Q=dg) is called the Weierstrass data of the CMC-c immersion f .
It is well known that CMC-1 surfaces in H3(�1) locally correspond to CMC-c surfaces in

H3(�c2) with the same �rst fundamental form and the same Hopf di�erential for any non-zero
real number c. As a special limiting case, when c ! 0, the CMC-c surface locally induces a
minimal surface with the same �rst fundamental form and the same Hopf di�erential. (The
secondary Gauss map of the CMC-c surface is the same as the Gauss map of the corresponding
minimal surface.) We call this the canonical correspondence. The lift F is related to the
Weierstrass data as follows (See [Bry],[UY1] and [UY2].):

F�1dF = c

�
g �g2

1 �g

�
Q

dg
:(9)

This analogue of the Weierstrass representation is called the Bryant representation. Since the
Weierstrass data is determined by the Hopf di�erential and the secondary Gauss map, the
corresponding minimal immersion f0 : ~M ! R3 has the expression

f0(z) = Re

Z z

z0

(1� g2; i(1 + g2); 2g)
Q

dg
;

with the same Weierstrass data (g;Q=dg).
Suppose that the �rst fundamental form ds2 of the CMC-c immersion f is complete and

of �nite total curvature. As in the case of minimal surfaces, there exists a compact Riemann
surface �M and a �nite number of points P1; � � � ; PN 2 �M such that M is bi-holomorphic to
�M n fP1; � � � ; PNg. Each point Pj is called an end of the surface. An end of a CMC-c surface
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is regular if the hyperbolic Gauss map extends meromorphically across the end; otherwise it is
called irregular. A meromorphic function onM is called rational if it extends meromorphically on
�M . For minimal surfaces, the immersion f0 :M ! R3 is called rational if the lift F0 :M ! C3

(such that f0 = F0 + �F0) extends meromorphically across the ends. Similarly, the CMC-c
immersion f is called rational if the lift F into PSL(2;C) of f is single valued on M and can
be extended meromorphically on �M . When f is H-deformable (namely, it admits a global non-
trivial isometric deformation preserving the principal curvatures), then the lift F is single valued
on M and the corresponding minimal surface f0 is rational. (See [UY3; p.216].) One particular
consequence is that the secondary Gauss map g of f is rational. Though the secondary Gauss
map g of an H-deformable CMC-c surface is rational, the hyperbolic Gauss map G might have
essential singularities. In fact, all of the examples we construct in the next section will have an
irregular end. This shows that H-deformable CMC-c surfaces f may not be rational in general.
More precisely, the H-deformability and the rationality are mutually independent concepts for
CMC-c surfaces in H3(�c2). In fact, there are CMC-1 surfaces which admit a rational lift into
PSL(2;C) but may not be H-deformable. (See Example 3 in [UY3, x3]). The following fact is
a key to the construction of complete H-deformable CMC-c surfaces.

Lemma 1. Let g and Q be a rational function and a meromorphic di�erential, respectively, on
a compact Riemann surface �M such that the symmetric tensor de�ned by

ds2 = (1 + jgj2)2
����Qdg
����
2

:(10)

is complete at the points fP1; � � � ; PNg (� �M) and is positive de�nite onM := �MnfP1; � � � ; PNg.
Suppose that for some non-zero real number c = c0, there exists a meromorphic function Gc0

de�ned on M such that

Sgdz
2 � SGc

dz2 = 2cQ:(11)

Then there exists a complete CMC-c0 immersion fc0 :M ! H3(�c20) with �nite total curvature
and whose Weierstrass data is (g;Q=dg). Furthermore, if meromorphic functions Gc on M
satisfying (11) exist for all c 2 R n f0g, then the original surface fc0 is H-deformable.

Proof. By Theorem 1.6 in [UY3], there exists a unique null meromorphic map (single valued on
all of M) Fc0 :M ! PSL(2;C) whose hyperbolic Gauss map and the secondary Gauss map are
Gc0 and g, respectively. We remark that one can, if necessary, explicitly write down Fc0 in terms
of 3-jets of Gc0 and g without integration (c.f. Small [S]). We set fc0 = (1=c0)Fc0F

�
c0 . By (10),

fc0 is an CMC-c0 immersion on M , and since ds2 is the induced metric, fc0 has a complete
metric. Since the total curvature is 4� times the degree of g, the rationality of g implies the
�niteness of the total curvature of f0. This proves the �rst assertion.

Now we assume a meromorphic function Gc on M satisfying (11) exists for each c 2 R n f0g.
Then the immersions (fc)c6=0, constructed as above by replacing c0 by c, are all single valued on
M and have the common Weierstrass data (g;Q=dg). By [UY3, Theorem 3.3], we can conclude
that each fc is H-deformable.

3. An analogue of the UP-iteration

First, we recall from [M] the de�nition of the UP-iteration for rational minimal surfaces of
genus zero. Let g : C ! CP 1 be a rational function and Q a meromorphic 2-di�erential on
CP 1 = C [ f1g, such that the metric given by

ds2 = (1 + jgj2)2
����Qdg
����
2

:(12)
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is complete at the points fP1; � � � ; PN ;1g (� CP 1) and is positive de�nite on M := CP 1 n
fP1; � � � ; PN ;1g. Then the map de�ned by the Weierstrass representation

f(z) = Re

Z z

z0

(1� g2; i(1 + g2); 2g)
Q

dg

is a conformal minimal immersion on the universal cover ~M of M . If the map

F (z) =
1

2

Z z

z0

(1� g2; i(1 + g2); 2g)
Q

dg

is a rational map on CP 1, f is called a rational minimal surface on M . In this procedure, ds2

is the �rst fundamental form of the minimal surface, and thus the positivity of the metric ds2

is crucial. In fact, if ds2 de�ned by (12) had degenerate points, such points would be branch
points of the surface.

We restrict the Hopf di�erential Q to the following form

Q = dz2;

where z is the canonical coordinate on C. By (12), we have

ds2 = j
1

g0
j2(1 + jgj2)2jdzj2;

where g0 = dg=dz. In this setting, the metric ds2 never degenerates: Let fP1; � � � ; PNg be
the union of the zeros of g0 and the poles of g on C. Then ds2 is complete at fP1; � � � ; PNg
and at in�nity, 1, and ds2 is positive de�nite on C n fP1; � � � ; PNg. The Darboux-B�acklund
transformation of g is given by

ĝ(z) :=

Z z

z0

dz

g0
;

which is globally de�ned if and only if the integrand has zero residues. If ĝ is de�ned on M , we
call ĝ rational.

Taking a sequence of M�obius transformations (Tn), we set

fn = Re

Z z

z0

(1� g2n; i(1 + g2n); 2gn)
dz

g0n
(n = 0; 1; 2; 3; :::);

where

g0 = g; gn+1 =\Tn � gn (n = 0; 1; 2; 3; :::):

The surfaces fn are called the n-th UP-iterates of f0. The following assertion has been shown
by the �rst author.

Theorem 2. (McCune [M, Theorem 5.8]) If g : C! CP 1 is rational with double branch points,
and if its Schwarzian derivative has zero residues, then each UP-iterate fn is a rational minimal
surface with Hopf di�erential Q = dz2 and with rational Gauss map gn.

For example, if we take Enneper's surface as the initial surface, the assumptions in the
theorem are satis�ed and we can construct various rational minimal surfaces with many ends.
(See [M].)

As mentioned in the previous section, minimal surfaces locally correspond to CMC-c sur-
faces with the same Weierstrass data. We denote by fn;c the corresponding CMC-c immersion
associated with fn and call it the H3(�c2)-correspondence of fn. By de�nition, fn;c has the
secondary Gauss map gn and the Hopf di�erential Q = dz2. Since the correspondence is local,
fn;c may not be single valued on the surface even when fn is rational. In fact, there is a rational
minimal surface whose associated CMC-c immersion is not single-valued (See [UY3, x3]). The
main result in this paper is as follows:

Theorem 3. If g : C ! CP 1 is rational with double branch points, and if its Schwarzian
derivative has zero residues, then the H3(�c2)-corresponding fn;c of each UP-iterate fn is an
H-deformable CMC-c surface with Hopf di�erential Q = dz2. The surface fn;c has regular ends
at the poles and at the branch points of its Gauss map gn, and it has an irregular end at z =1.
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Moreover, the original UP-iterate fn can be viewed as the limit limc!0 fn;c in the Poincare ball
of radius 1=c.

This theorem implies that the UP-iteration has a very strong property: it simultaneously
ensures the preservation of the single valued property and the preservation of theH-deformablity
for the H3(�c2)-correspondence. It should be remarked that fc and f�c are non-congruent in
general. (See Example below.) To prove the theorem, we �rst prepare some notation and a
lemma.

The Schwarzian derivative Sg(z) is single valued onC and has the following Laurent expansion
around a double branch point z = P of g:

Sg(z) = �
4

(z � P )2
+

�1
(z � P )

+ �2 + �3(z � P ) + � � � :

Each coe�cient �j is called the j-th coe�cient of Sg(z) at z = P .

Lemma 4. If g : C ! CP 1 is rational with double branch points, and if its Schwarzian de-
rivative has zero residues, then the third coe�cient of Sg(z) vanishes at the branch points of
g.

Proof. We �rst treat the case where g has non-polar double branch points: A non-polar branch
point of a rational function g : C ! CP 1 is a branch point p of g such that g(p) 6= 1. Let
z = P be such a branch point of g. Then g0(z) has the following expansion at z = P

g0(z) = b2(z � P )2 + b3(z � P )3 + b4(z � P )4 + : : : :(13)

By a direct calculation, we have

Sg(z) = �
4

(z � P )2
�

2b3
b2(z � P )

+

�
b23
2b22

�
2b4
b2

�
+ (

b33
b32
�

2b3b4
b22

)(z � P ) + : : : :

Since Sg has zero residues, we have b3 = 0. The third coe�cient of Sg(z) at z = P is given by

b33
b32
�

2b3b4
b22

;

which vanishes because b3 = 0.
If some of the double branch points are poles, then we can choose a M�obius transformation

� such that � � g has non-polar double branch points. Applying the arguments above, we see
that the third coe�cient of S��g(z) is zero. Since S��g(z) = Sg(z), this implies that the third
coe�cient of Sg(z) is zero.

Proof of Theorem 3. We �rst assume that gn�1 has r double branch points, but no other branch
points, and also that its Schwarzian has zero residues. Then for any M�obius transformation �
we obtain a map gn = \� � gn�1. As seen in the proof of [M, Theorem 5.8], there are only r
M�obius transformations such that gn does not have double branch points. If � is such a M�obius
transformation, then we may take a sequence of M�obius transformations (�k)k=1;2;3;::: such that
limk!1 �k = � and such that

gn;k := \�k � gn�1

has double branch points for each k. Since the maps gn;k converge locally uniformly to the map
gn, and since the Schwarzian of a function is a rational expression in terms of the derivatives
of that function, the Schwarzians Sgn;k also converge locally uniformly to Sgn . It was shown in
[M] that, for each k, Sgn;k has zero residues because gn�1 has double branch points and because
Sgn�1 has zero residues. Then Lemma 4 implies that the third coe�cient of Sgn;k vanishes at
the branch points of gn;k. (The branch points of gn;k will move as k moves and converge to the
branch points of gn.)

Let Pi(k), i = 1; : : : ; N(k) be the branch points of gn;k. Note that the poles of Sgn;k only
occur at the branch points of gn;k. We set

Mk = C n fPi(k)g
N(k)
i=1 ;
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and denote by ~Mk its universal covering. Then there exists a holomorphic function Gc;n;k on
~Mk such that

SGc;n;k
= Sgn;k � 2c:(14)

To see this, consider the ordinary di�erential equation

 00(z) + u(z; c; n; k) (z) = 0;(15)

where

u(z; c; n; k) =
1

2
(Sgn;k (z)� 2c):

Since u(z; c; n; k) has pole of order 2 at each branch point of gn;k, the ordinary di�erential
equation (15) has regular singularities at these points. Expanding Sgn;k at the branch point
Pi(k) for a given i shows that the leading coe�cient of Sgn;k is �4 (because gn;k has double
branch points). Therefore the indicial equation is given by (see appendix)

�2 � �� 2 = (� � 2)(�+ 1) = 0:

By the appendix, (15) has the two linearly independent solutions fX1; X2g of the form

X1(z) = (z � Pi)
�1

1X
j=0

�j(z � Pi)
j ; X2(z) = (z � Pi)

2
1X
j=0

�j(z � Pi)
j + �X1(z) log(z � Pi);

where the coe�cient � is called the log-term coe�cient. By (iii) of the corollary in the appendix,
we have

� =
1

2
�3 �

1

4
�1(�2 � 2c) +

1

32
(�1)

3:

where �j (j = 1; 2; 3) is the j-th coe�cient of Sgn;k . Since Sgn;k has no residue, we have �1 = 0,
and by Lemma 4, �3 also vanishes. Thus � = 0. In particular, X1 and X2 are both single valued
around z = Pi. We have (see [L] or [M])

SX1=X2
= Sgn;k � 2c:

This implies that X1=X2 and Gc;n;k di�er only by a M�obius transformation, and that Gc;n;k is
meromorphic at z = Pi(k). Hence Gc;n;k is an entire function.

Then by Lemma 1, there exists CMC-c surface in H3(�c2) whose hyperbolic Gauss map and
the secondary Gauss map are Gc;n;k and gn;k, respectively. Since the periods are continuous,
taking a limit k ! 1, we can conclude that the H3(�c2)-corresponding surface fn;c is also
single valued on M . We assumed that gn�1 had double branch points, but by using multiple
sequences of M�obius transformations, it is enough to assume that our initial Gauss map g had
double branch points.

Since c is arbitrary, fn;c is H-deformable by Lemma 1. An end of a CMC-c surface in H3(�c2)
is regular if and only if the Hopf di�erential is at most pole of order �2 ([Bry] and [UY1]). Since
fn;c has the same �rst fundamental form and the Hopf di�erential as fn, the branch points
and poles of gn are regular ends. In fact, the metric ds2 is complete and the Hopf di�erential is
holomorphic at those points. The metric ds2 is also complete at z =1, but the Hopf di�erential
has pole of order �4. This implies z =1 is an irregular end of fn;c. In [UY2], it is shown that
the associate minimal immersion can be obtained as a limit of associated CMC-c immersion in
the Poincare ball of radius 1=c as c! 0. The �nal assertion follows from it.

Example 1. For producing concrete examples, Enneper's surface is the initial data used
in the UP-iteration. This minimal surface has Weierstrass data (z; dz2), and the H3(�c2)-
corresponding surface fc has the hyperbolic Gauss map G(z) = Tanh(cz). Under the trans-
formation z 7! iz, the �rst fundamental form ds2 = (1 + jzj)2jdzj2 is unchanged and the Hopf
di�erential changes sign. This implies that fc and f�c are congruent. (The surfaces fc and
f�c are congruent if and only if the �rst fundamental form does not change under the trans-
formation z 7! iz. ) In Figure 1, the original minimal Enneper's surface is shown on the
left. The corresponding CMC1 surface f1 in H3(�1), called Enneper's cousin, is shown in the

center. To the right, the dual surface f#1 of the Enneper cousin f1 is shown. An explicit formula

for the lift F can be found in [Bry, p.340]. The surface f#1 is obtained by using the lift F�1,
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Figure 1. Enneper's surface, its cousin, and the cousin's dual. (The last two
pictures are courtesy of Wayne Rossman.)

rather than the lift F of f1, the e�ect being that the hyperbolic and secondary Gauss maps are
interchanged. The dual surface of Enneper's cousin is also a complete surface, but it has in�nite
total curvature.

Example 2. In applying the UP-iteration to Enneper's surface, there is one parameter
of freedom arising from the choice of M�obius transformation. A M�obius transformation � is
composed with the Gauss map g0(z) = z, and then the Darboux-B�acklund transformation is
performed to yield the new Gauss map g1. If we choose

� =

�
0 �1
1 k1

�
;

then the UP-iterate is

g1 =

Z
1

(� � g0)0(z)
=

Z
1

(z + k1)2
= k21z + k1z

2 +
z3

3
;

up to an additive constant of integration.
Choosing the constant k1 = 1 yields the Gauss map g(z) = z + z2 + z3=3, and the �rst

fundamental form is ds2 = (1 + jz + z2 + z3=3j2)2=(j1 + 2z + z2j2). Since ds2 is not invariant
under the transformation z 7! iz, this Gauss map yields non-congruent H3(�1)-corresponding
surfaces, f1 and f�1. The two hyperbolic Gauss maps are

G1(z) =
�(1 + z)Cosh(1 + z) + Sinh(1 + z)

�Cosh(1 + z) + (1 + z)Sinh(1 + z)

and

G�1(z) =
(1 + z)Cos(1 + z)� Sin(1 + z)

Cos(1 + z) + (1 + z)Sin(1 + z)
;

with Schwarzians

SG1
(z) = �2

3 + 2z + z2

(1 + z)2

and

SG
�1
(z) = 2

�1 + 2z + z2

(1 + z)2
;

respectively. The original minimal surface, along with the H3(�1) corresponding surface for
c = 1, are shown in Figure 2. The H3(�1) corresponding surface for c = �1 is shown from both
front and back in Figure 3.
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Figure 2. A �rst level UP-iterate and one of its H3(�1)-corresponding surfaces.

Figure 3. Two views of another H3(�1)-corresponding surface.

Appendix: A computation of the log term coefficients

We shall discuss on the solution of the ODE with a regular singularity at z = P (P 2 C)

(z � P )2y00(z)� q(z)y(z) = 0;(16)

where q(z) =
P1

j=0 qj(z � P )j (qj 2 C): It is well known that (16) has the two linearly inde-

pendent solutions fX1; X2g of the form

X1(z) = z�1
1X
j=0

�j(z � P )j ; X2(z) = z�2
1X
j=0

�j(z � P )j + �X1 log(z � P );

where �1 and �2 are the solutions of the indicial equation of (16),

�2 � �� q0 = 0;
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explicitly,

�1 =
1

2
f1 +mg ; �2 =

1

2
f1�mg ; m =

p
1 + 4q0:(17)

The coe�cient � is called the log-term coe�cient at the regular singular point z = P , which
might be non-zero only when

m := �1 � �2 2 Z:

The following assertion holds. (c.f. [CL])

Proposition. Suppose the di�erence of the solutions of indicial equation m := �1 � �2 is a
positive integer. Then the log-term coe�cient � is given by

� =
1

m

m�1X
k=0

qm�kak(18)

where

a0 = m

aj =
1

j(j �m)

j�1X
k=0

qj�kak

By a direct calculation, we obtain the following

Corollary. The solutions of (z � P )2y00(z) � q(z)y(z) = 0 have no log-term at z = P if and
only if

(i) q1 = 0 for m = 1,
(ii) q2 � (q1)

2 = 0 for m = 2,
(iii) q3 � q1q2 +

1
4 (q1)

3 = 0 for m = 3.
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