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AN ANALOGUE OF THE UP-ITERATION FOR CONSTANT MEAN
CURVATURE ONE SURFACES IN HYPERBOLIC 3-SPACE

CATHERINE MCCUNE AND MASAAKI UMEHARA

1. INTRODUCTION

It is well known that a surface of constant mean curvature in a space form has a 1-parameter
family of local isometric deformations preserving the principal curvature functions. If such a local
deformation can be extended globally, the surface is called H-deformable. We denote by H3(—c?)
the hyperbolic 3-space of constant curvature —c?. It is well known that surfaces of constant mean
curvature ¢ have quite similar properties to minimal surfaces in R?, in particular, they have an
analogue of the Weierstrass representation called the Bryant representation. A complete minimal
surface of finite total curvature in R? is H-deformable if and only if it is rational. However, for
CMC-c surfaces in H3(—c?), H-deformability is independent of the rationality, and only a few
such examples are known (c.f. [UY3]).

Recently, the first author [M] gave a method, called the UP-iteration, for constructing new
rational minimal surfaces of genus zero from a given rational minimal surface. In this paper,
we shall give an analogue of it for CMC-c surfaces in hyperbolic 3-space H3(—c?), and give
countably many non-trivial families of new complete H-deformable CMC-¢ surfaces of finite
total curvature in H?(—c?). The hyperbolic 3-space H3(—c?) can be realized as the Poincare
ball of radius 1/c. The original UP-iteration can be viewed as the limit of this hyperbolic
analogue as ¢ — 0.

2. PRELIMINARIES

Let Herm(2) be the set of 2-dimensional Hermitian matrices. The hyperbolic 3-space can be
expressed as ([Bry])

H?(—c?) = {X € Herm(2); det(X) = 1/c?, trace(X) > 0}.

Let f : M — H3(—c?) be a conformal CMC-¢ immersion. We denote by M the universal
covering space of M. There exists a null holomorphic immersion

A B\ -
F:(C D).M—>PSL(2,C)

such that f = (1/¢)FF*, where PSL(2,C) = SL(2,C)/{+£1} and ‘null’ means that the pull-back
by F of the bi-invariant metric on PSL(2, C) vanishes ([Bry]). We call the null holomorphic im-
mersion F': M — PSL(2, C) the lift of f. The lift F has an ambiguity of the right multiplication
of the constant matrix in SU(2). Since F is null, it satisfies the identity

(1) det(F~'F') =0,

where F' = dF'/dz, and z is a local complex coordinate.
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For a CMC-c immersion f, the hyperbolic Gauss map G and the secondary Gauss map g are
defined as follows (See [UY4]):

N X B _ah b
C'TD T ot o

& gi=-D = D _on_on
o A" a1 g

where (a;;) = F7'F’ and (af;) = F(F 1) = —F'F~1. The hyperbolic Gauss map G is single
valued on M, but the secondary Gauss map g is defined on the universal cover M. When we
replace the lift F' by Fb~! (b = (b;;) € SU(2)), the hyperbolic Gauss map is invariant, but the
secondary Gauss map is changed. The new secondary Gauss map § is given by

(4) - 2119 + b12-

219 + b2z
The geometric meanings of G' and g are as follows: Identify the ideal boundary S? of H?(—c?)
with C U {oo} by stereographic projection. Then the normal geodesic ray emanating from each
point z = P of the surface meets the ideal boundary at G(P) ([Bry]). The (2,0)-part Q of the
complexified second fundamental form is called the Hopf differential of the immersion f. The
second fundamental form A of f is expressed

(5) h=Q+ Q+cds?

where ds? is the first fundamental form. Moreover, the first fundamental form ds? has the
expression ([UY2])
2

Q

dg
The hyperbolic Gauss map G, the secondary Gauss map g and the Hopf differential Q satisfy
the following identity ([UY1], [UY3])

(6) ds* = (1 + |g]*)*

(7) S,dz? — Sgdz® = 2¢Q,

where S,, denotes the Schwarzian derivative of a holomorphic function u defined by
W\ 1 (W , du o,  d*u

®) 5, = (;) —5(7) )

The pair (g, Q/dg) is called the Weierstrass data of the CMC-c immersion f.

It is well known that CMC-1 surfaces in #3(—1) locally correspond to CMC-¢ surfaces in
H3(—c?) with the same first fundamental form and the same Hopf differential for any non-zero
real number ¢. As a special limiting case, when ¢ — 0, the CMC-¢ surface locally induces a
minimal surface with the same first fundamental form and the same Hopf differential. (The
secondary Gauss map of the CMC-c¢ surface is the same as the Gauss map of the corresponding
minimal surface.) We call this the canonical correspondence. The lift F' is related to the
Weierstrass data as follows (See [Bry],[UY1] and [UY2].):

2
(9) FdF =c <g 9 ) Q.
1 —-g9)dg
This analogue of the Weierstrass representation is called the Bryant representation. Since the
Weierstrass data is determined by the Hopf differential and the secondary Gauss map, the
corresponding minimal immersion fy : M — R3 has the expression

z
foe) = Re [ (1= gil1+97),20) 2.
2 dg
with the same Weierstrass data (g, Q/dg).

Suppose that the first fundamental form ds? of the CMC-¢ immersion f is complete and
of finite total curvature. As in the case of minimal surfaces, there exists a compact Riemann
surface M and a finite number of points Pj,---, Py € M such that M is bi-holomorphic to
M\ {Py,---,Pn}. Each point P; is called an end of the surface. An end of a CMC-c surface
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is regular if the hyperbolic Gauss map extends meromorphically across the end; otherwise it is
called irregular. A meromorphic function on M is called rational if it extends meromorphically on
M . For minimal surfaces, the immersion fy : M — R? is called rational if the lift Fy : M — C?
(such that fo = Fy + Fp) extends meromorphically across the ends. Similarly, the CMC-c
immersion f is called rational if the lift F' into PSL(2,C) of f is single valued on M and can
be extended meromorphically on M. When f is H-deformable (namely, it admits a global non-
trivial isometric deformation preserving the principal curvatures), then the lift F' is single valued
on M and the corresponding minimal surface fy is rational. (See [UY3; p.216].) One particular
consequence is that the secondary Gauss map g of f is rational. Though the secondary Gauss
map g of an H-deformable CMC-c surface is rational, the hyperbolic Gauss map G might have
essential singularities. In fact, all of the examples we construct in the next section will have an
irregular end. This shows that H-deformable CMC-c surfaces f may not be rational in general.
More precisely, the H-deformability and the rationality are mutually independent concepts for
C M C-c surfaces in H?(—c?). In fact, there are CMC-1 surfaces which admit a rational lift into
PSL(2, C) but may not be H-deformable. (See Example 3 in [UY3, §3]). The following fact is
a key to the construction of complete H-deformable CMC-¢ surfaces.

Lemma 1. Let g and Q be a rational function and a meromorphic differential, respectively, on
a compact Riemann surface M such that the symmetric tensor defined by

Q

dg

(10) ds® = (1+g[*)?

is complete at the points {Py, -+ , Py} (C M) and is positive definite on M := M\{Py,--- ,Px}.
Suppose that for some non-zero real number ¢ = cy, there exists a meromorphic function G,
defined on M such that

(11) S,dz? — Sg.dz* = 2cQ.

Then there exists a complete CMC-co immersion f., : M — H3(—c) with finite total curvature
and whose Weierstrass data is (g, Q/dg). Furthermore, if meromorphic functions G. on M
satisfying (11) exist for all ¢ € R\ {0}, then the original surface f., is H-deformable.

Proof. By Theorem 1.6 in [UY3], there exists a unique null meromorphic map (single valued on
all of M) F., : M — PSL(2, C) whose hyperbolic Gauss map and the secondary Gauss map are
G, and g, respectively. We remark that one can, if necessary, explicitly write down F¢, in terms
of 3-jets of G, and g without integration (c.f. Small [S]). We set f., = (1/co) Fe, Fx . By (10),
feo is an CMC-co immersion on M, and since ds? is the induced metric, f., has a complete
metric. Since the total curvature is 47 times the degree of g, the rationality of g implies the
finiteness of the total curvature of fy. This proves the first assertion.

Now we assume a meromorphic function G, on M satisfying (11) exists for each ¢ € R\ {0}.
Then the immersions (f.)cz0, constructed as above by replacing ¢y by c, are all single valued on
M and have the common Weierstrass data (g,Q/dg). By [UY3, Theorem 3.3], we can conclude
that each f. is H-deformable. O

3. AN ANALOGUE OF THE UP-ITERATION

First, we recall from [M] the definition of the UP-iteration for rational minimal surfaces of
genus zero. Let g : C — CP! be a rational function and Q a meromorphic 2-differential on
CP' = CU {o0}, such that the metric given by

(12) ds® = (1+g[*)?

Q
dg
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is complete at the points {P;,---,Py,00}(C CP') and is positive definite on M := CP! \
{Py, - ,Pn,o0}. Then the map defined by the Weierstrass representation

fz) = Re/za - i1+ 9).20) 2

2o
is a conformal minimal immersion on the universal cover M of M. If the map

FE) =5 [ =g+ g2 2
2 /., ’ " dg
is a rational map on CP!, f is called a rational minimal surface on M. In this procedure, ds>
is the first fundamental form of the minimal surface, and thus the positivity of the metric ds?
is crucial. In fact, if ds? defined by (12) had degenerate points, such points would be branch
points of the surface.
We restrict the Hopf differential Q to the following form

Q:dz2,

where 7z is the canonical coordinate on C. By (12), we have
1
ds® = IEIQ(l +1g/*)%|dz|?,

where ¢’ = dg/dz. In this setting, the metric ds®> never degenerates: Let {P;,---, Py} be
the union of the zeros of g’ and the poles of g on C. Then ds? is complete at {Py,---, Py}
and at infinity, co, and ds? is positive definite on C \ {Py,---, Px}. The Darbouz-Bicklund

transformation of g is given by
i) /Z dz
9(z) = —
Z0 g’,

which is globally defined if and only if the integrand has zero residues. If g is defined on M, we
call g rational.
Taking a sequence of Mobius transformations (7},), we set

z ) dz
fn :Re/ (l—g%,z(l—{—gi)ﬂgn)g—, (n=0,1,2,3,...),

Z0 n

where

go =9, In+1 :Tnogn (n:07172737“‘)'
The surfaces f,, are called the n-th UP-iterates of fy. The following assertion has been shown
by the first author.

Theorem 2. (McCune [M, Theorem 5.8]) If g : C — CP! is rational with double branch points,
and if its Schwarzian derivative has zero residues, then each UP-iterate f, is a rational minimal
surface with Hopf differential Q = dz? and with rational Gauss map g,,.

For example, if we take Enneper’s surface as the initial surface, the assumptions in the
theorem are satisfied and we can construct various rational minimal surfaces with many ends.
(See [M].)

As mentioned in the previous section, minimal surfaces locally correspond to CMC-¢ sur-
faces with the same Weierstrass data. We denote by f, . the corresponding CMC-c immersion
associated with f,, and call it the H3(—c?)-correspondence of f,. By definition, f, . has the
secondary Gauss map ¢, and the Hopf differential @ = dz2. Since the correspondence is local,
fn,c may not be single valued on the surface even when f,, is rational. In fact, there is a rational
minimal surface whose associated CMC-c¢ immersion is not single-valued (See [UY3, §3]). The
main result in this paper is as follows:

Theorem 3. If g : C — CP! is rational with double branch points, and if its Schwarzian
derivative has zero residues, then the H?*(—c?)-corresponding f, . of each UP-iterate f, is an
H-deformable CMC-c surface with Hopf differential Q = dz2. The surface f, . has reqular ends
at the poles and at the branch points of its Gauss map gy, and it has an irreqular end at z = co.



Moreover, the original UP-iterate f,, can be viewed as the limit lim._,o fy . in the Poincare ball
of radius 1/c.

This theorem implies that the UP-iteration has a very strong property: it simultaneously
ensures the preservation of the single valued property and the preservation of the H-deformablity
for the H3(—c?)-correspondence. It should be remarked that f. and f_. are non-congruent in
general. (See Example below.) To prove the theorem, we first prepare some notation and a
lemma.

The Schwarzian derivative S, (2) is single valued on C and has the following Laurent expansion
around a double branch point z = P of g:

4 B
C-P2 z-P)

Each coefficient §; is called the j-th coefficient of S,(z) at z = P.

Sg(z) ==

+ P2+ Bs(z =P+

Lemma 4. If g : C — CP! is rational with double branch points, and if its Schwarzian de-
rivative has zero residues, then the third coefficient of Sy(z) vanishes at the branch points of

g.
Proof. We first treat the case where g has non-polar double branch points: A non-polar branch

point of a rational function g : C — CP! is a branch point p of g such that g(p) # co. Let
z = P be such a branch point of g. Then ¢'(z) has the following expansion at z = P

(13) g'(2) =by(z — P)> +b3(z — P> + by(z — P)* + ... .
By a direct calculation, we have
4 2bs b2 2Dy b3 2b3by
= - —s == =3 —P)+....
%) =~ TP T G- D) <2bg b (bg b2 )z —P)+

Since S, has zero residues, we have b3 = 0. The third coefficient of S,(z) at z = P is given by

by 2bs3by
by b3
which vanishes because b3 = 0.
If some of the double branch points are poles, then we can choose a Mobius transformation
i such that p o g has non-polar double branch points. Applying the arguments above, we see
that the third coefficient of Sy04(2) is zero. Since Syoq(2) = Sg(2), this implies that the third
coefficient of S;(z) is zero. O

Proof of Theorem 3. We first assume that g, has r double branch points, but no other branch
points, and also that its Schwarzian has zero residues. Then for any Mobius transformation v
we obtain a map g, = v g,_1. As seen in the proof of [M, Theorem 5.8], there are only r
Mobius transformations such that g, does not have double branch points. If v is such a Mobius
transformation, then we may take a sequence of Mobius transformations (vg)g=1,2,3,... such that
limy_so v = v and such that
In,k = Vk/og\nfl

has double branch points for each k. Since the maps g, ; converge locally uniformly to the map
gn, and since the Schwarzian of a function is a rational expression in terms of the derivatives
of that function, the Schwarzians Sy, , also converge locally uniformly to Sy, . It was shown in
[M] that, for each k, S, , has zero residues because g,_1 has double branch points and because
Sg._, has zero residues. Then Lemma 4 implies that the third coefficient of Sy, , vanishes at
the branch points of gy, ;. (The branch points of g, will move as k moves and converge to the
branch points of g,,.)

Let P;(k), ¢ = 1,...,N(k) be the branch points of g, . Note that the poles of S,
occur at the branch points of g, ;. We set

only

n.k

My = C\ {P(k)}N P,
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and denote by ]\;Ik its universal covering. Then there exists a holomorphic function G, . ; on
M, such that

(14) SGens = Sgus — 2¢.

To see this, consider the ordinary differential equation

(15) P"(2) +u(z;6,n, k)p(z) =0,
where

u(z6m,K) = 3 (8y,.4(2) — 20).

Since u(z;c,n,k) has pole of order 2 at each branch point of gy, the ordinary differential
equation (15) has regular singularities at these points. Expanding S, , at the branch point
P;(k) for a given i shows that the leading coefficient of S, , is —4 (because g, has double
branch points). Therefore the indicial equation is given by (see appendix)

M-A=2=A=-2)(A+1)=0.
By the appendix, (15) has the two linearly independent solutions {X;, X5} of the form

Xi(z)=(z—P)~" ij(z - Py, X3(2)=(z-P) ZW(Z — B)’ + pXy(2)log(z — Py),

where the coefficient p is called the log-term coefficient. By (iii) of the corollary in the appendix,
we have

1.1 1
n= 553 - 151(52 —2¢) + 5(51) :
where 3; (j = 1,2,3) is the j-th coefficient of S, ,. Since Sy, , has no residue, we have ; =0,

and by Lemma 4, 33 also vanishes. Thus p = 0. In particular, X; and X are both single valued
around z = P;. We have (see [L] or [M])

SXl/Xz = Sgn‘k — 20.

This implies that X;/X, and G, differ only by a Mdbius transformation, and that G, is
meromorphic at z = P;(k). Hence G, p 1 is an entire function.

Then by Lemma 1, there exists CMC-c surface in H3(—c?) whose hyperbolic Gauss map and
the secondary Gauss map are G, and g i, respectively. Since the periods are continuous,
taking a limit k — oo, we can conclude that the H3(—c?)-corresponding surface f, . is also
single valued on M. We assumed that g,—1 had double branch points, but by using multiple
sequences of Mobius transformations, it is enough to assume that our initial Gauss map g had
double branch points.

Since c is arbitrary, f, . is H-deformable by Lemma 1. An end of a CMC-c surface in H3(—c?)
is regular if and only if the Hopf differential is at most pole of order —2 ([Bry] and [UY1]). Since
fn,c has the same first fundamental form and the Hopf differential as f,, the branch points
and poles of g,, are regular ends. In fact, the metric ds? is complete and the Hopf differential is
holomorphic at those points. The metric ds? is also complete at z = oo, but the Hopf differential
has pole of order —4. This implies z = oo is an irregular end of f,, .. In [UY2], it is shown that
the associate minimal immersion can be obtained as a limit of associated CMC-¢ immersion in
the Poincare ball of radius 1/¢ as ¢ — 0. The final assertion follows from it. O

Example 1. For producing concrete examples, Enneper’s surface is the initial data used
in the UP-iteration. This minimal surface has Weierstrass data (z,dz?), and the H3(—c?)-
corresponding surface f. has the hyperbolic Gauss map G(z) = Tanh(cz). Under the trans-
formation z — iz, the first fundamental form ds® = (1 + |z|)?|dz|? is unchanged and the Hopf
differential changes sign. This implies that f. and f_. are congruent. (The surfaces f. and
f—c are congruent if and only if the first fundamental form does not change under the trans-
formation z + iz. ) In Figure 1, the original minimal Enneper’s surface is shown on the
left. The corresponding CMC1 surface f; in H3(—1), called Enneper’s cousin, is shown in the
center. To the right, the dual surface fl# of the Enneper cousin f; is shown. An explicit formula
for the lift F' can be found in [Bry, p.340]. The surface fl# is obtained by using the lift F~!,



FIGURE 1. Enneper’s surface, its cousin, and the cousin’s dual. (The last two
pictures are courtesy of Wayne Rossman.)

rather than the lift F' of fi, the effect being that the hyperbolic and secondary Gauss maps are
interchanged. The dual surface of Enneper’s cousin is also a complete surface, but it has infinite
total curvature.

Example 2. In applying the UP-iteration to Enneper’s surface, there is one parameter
of freedom arising from the choice of M6bius transformation. A MGdbius transformation v is
composed with the Gauss map go(z) = z, and then the Darboux-Bécklund transformation is
performed to yield the new Gauss map g;. If we choose

(0 -1
Y= 1 ok )
then the UP-iterate is

S T
= _— = _— = A A —
9 (o 90)(2) (z+ k)2 e H 3

up to an additive constant of integration.

Choosing the constant k; = 1 yields the Gauss map g(z) = 2z + 2% + 23/3, and the first
fundamental form is ds® = (1 + |z + 22 + 23/3|*)?/(]1 + 22 + 2?|?). Since ds? is not invariant
under the transformation z — iz, this Gauss map yields non-congruent H3(—1)-corresponding
surfaces, f1 and f_;. The two hyperbolic Gauss maps are

_ —(1+2)Cosh(1 + z) + Sinh(1 + z)
~ —Cosh(1+2) + (14 2)Sinh(1 + 2)

G1 (Z)

and
Go1(2) = (14 2)Cos(1+z) — Sin(1+ 2)
—E = Cos(1+2)+ (1 +2)Sin(1 +z)’

with Schwarzians

3422+ 22
) R e M
SG1 (Z) (1 +Z)2
and
1422+ 22
S, —g_~TeT e
G—l(z) (1 +Z)2 )

respectively. The original minimal surface, along with the #?(—1) corresponding surface for
¢ = 1, are shown in Figure 2. The H?(—1) corresponding surface for ¢ = —1 is shown from both
front and back in Figure 3.



FIGURE 3. Two views of another #3(—1)-corresponding surface.

APPENDIX: A COMPUTATION OF THE LOG TERM COEFFICIENTS
We shall discuss on the solution of the ODE with a regular singularity at z = P (P € C)
(16) (z = P)*y"(2) — q(2)y(2) = 0,

where ¢(z) = Z;io qj(z — P)7 (g; € C). It is well known that (16) has the two linearly inde-
pendent solutions {X7, X5} of the form

o0

Xi(z) = 2™ ij(z — P)J, Xo(2) = 272 an (z — P)? + X, log(z — P),
7j=0 7j=0

where \; and A, are the solutions of the indicial equation of (16),

X=X =qo=0;



explicitly,

1 1
(17) )\1:§{I+m}, )\2:§{l—m}, m = +/1+ 4qp.

The coefficient u is called the log-term coefficient at the regular singular point z = P, which
might be non-zero only when

m:= A — Ay € Z.
The following assertion holds. (c.f. [CL])

Proposition. Suppose the difference of the solutions of indicial equation m = A1 — X2 is a
positive integer. Then the log-term coefficient u is given by
1 m—1
(18) n= m Z Qm—kQk
k=0
where
ap = m
1=
a; = qj—kQf
! j(j —m) ;0 !

By a direct calculation, we obtain the following

Corollary. The solutions of (z — P)%*y"(z) — q(2)y(z) = 0 have no log-term at z = P if and
only if

() g =0 form=1,

(i) g2 = (@)* =0 form =2,

(iii) g5 — q1g2 + 7(q1)* =0 for m = 3.
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