AN ANALOGUE OF THE UP-ITERATION FOR CONSTANT MEAN CURVATURE ONE SURFACES IN HYPERBOLIC 3-SPACE

CATHERINE MCCUNE AND MASAAKI UMEHARA

1. Introduction

It is well known that a surface of constant mean curvature in a space form has a 1-parameter family of local isometric deformations preserving the principal curvature functions. If such a local deformation can be extended globally, the surface is called H-deformable. We denote by $\mathcal{H}^{3}\left(-c^{2}\right)$ the hyperbolic 3 -space of constant curvature $-c^{2}$. It is well known that surfaces of constant mean curvature c have quite similar properties to minimal surfaces in \mathbf{R}^{3}, in particular, they have an analogue of the Weierstrass representation called the Bryant representation. A complete minimal surface of finite total curvature in \mathbf{R}^{3} is H-deformable if and only if it is rational. However, for CMC-c surfaces in $\mathcal{H}^{3}\left(-c^{2}\right), H$-deformability is independent of the rationality, and only a few such examples are known (c.f. [UY3]).

Recently, the first author $[\mathrm{M}]$ gave a method, called the UP-iteration, for constructing new rational minimal surfaces of genus zero from a given rational minimal surface. In this paper, we shall give an analogue of it for CMC-c surfaces in hyperbolic 3 -space $\mathcal{H}^{3}\left(-c^{2}\right)$, and give countably many non-trivial families of new complete H-deformable CMC-c surfaces of finite total curvature in $\mathcal{H}^{3}\left(-c^{2}\right)$. The hyperbolic 3 -space $\mathcal{H}^{3}\left(-c^{2}\right)$ can be realized as the Poincare ball of radius $1 / c$. The original UP-iteration can be viewed as the limit of this hyperbolic analogue as $c \rightarrow 0$.

2. Preliminaries

Let Herm(2) be the set of 2-dimensional Hermitian matrices. The hyperbolic 3-space can be expressed as ([Bry])

$$
\mathcal{H}^{3}\left(-c^{2}\right)=\left\{X \in \operatorname{Herm}(2) ; \operatorname{det}(X)=1 / c^{2}, \operatorname{trace}(X)>0\right\}
$$

Let $f: M \rightarrow \mathcal{H}^{3}\left(-c^{2}\right)$ be a conformal CMC-c immersion. We denote by \tilde{M} the universal covering space of M. There exists a null holomorphic immersion

$$
F=\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right): \tilde{M} \rightarrow \operatorname{PSL}(2, \mathbf{C})
$$

such that $f=(1 / c) F F^{*}$, where $\operatorname{PSL}(2, \mathbf{C})=\mathrm{SL}(2, \mathbf{C}) /\{ \pm 1\}$ and 'null' means that the pull-back by F of the bi-invariant metric on $\operatorname{PSL}(2, \mathbf{C})$ vanishes ([Bry]). We call the null holomorphic immersion $F: M \rightarrow \operatorname{PSL}(2, \mathbf{C})$ the lift of f. The lift F has an ambiguity of the right multiplication of the constant matrix in $\mathrm{SU}(2)$. Since F is null, it satisfies the identity

$$
\begin{equation*}
\operatorname{det}\left(F^{-1} F^{\prime}\right)=0 \tag{1}
\end{equation*}
$$

where $F^{\prime}=d F / d z$, and z is a local complex coordinate.

[^0]For a CMC-c immersion f, the hyperbolic Gauss map G and the secondary Gauss map g are defined as follows (See [UY4]):

$$
\begin{align*}
& G:=\frac{A^{\prime}}{C^{\prime}}=\frac{B^{\prime}}{D^{\prime}}=\frac{\alpha_{11}^{\#}}{\alpha_{21}^{\#}}=\frac{\alpha_{12}^{\#}}{\alpha_{22}^{\#}} \tag{2}\\
& g:=-\frac{D^{\prime}}{C^{\prime}}=-\frac{B^{\prime}}{A^{\prime}}=\frac{\alpha_{11}}{\alpha_{21}}=\frac{\alpha_{12}}{\alpha_{22}} \tag{3}
\end{align*}
$$

where $\left(\alpha_{i j}\right)=F^{-1} F^{\prime}$ and $\left(\alpha_{i j}^{\#}\right)=F\left(F^{-1}\right)^{\prime}=-F^{\prime} F^{-1}$. The hyperbolic Gauss map G is single valued on M, but the secondary Gauss map g is defined on the universal cover \tilde{M}. When we replace the lift F by $F b^{-1}\left(b=\left(b_{i j}\right) \in \mathrm{SU}(2)\right)$, the hyperbolic Gauss map is invariant, but the secondary Gauss map is changed. The new secondary Gauss map \tilde{g} is given by

$$
\begin{equation*}
\tilde{g}:=\frac{b_{11} g+b_{12}}{b_{21} g+b_{22}} \tag{4}
\end{equation*}
$$

The geometric meanings of G and g are as follows: Identify the ideal boundary S^{2} of $\mathcal{H}^{3}\left(-c^{2}\right)$ with $\mathbf{C} \cup\{\infty\}$ by stereographic projection. Then the normal geodesic ray emanating from each point $z=P$ of the surface meets the ideal boundary at $G(P)$ ([Bry]). The (2,0)-part \mathcal{Q} of the complexified second fundamental form is called the Hopf differential of the immersion f. The second fundamental form h of f is expressed

$$
\begin{equation*}
h=\mathcal{Q}+\overline{\mathcal{Q}}+c d s^{2} \tag{5}
\end{equation*}
$$

where $d s^{2}$ is the first fundamental form. Moreover, the first fundamental form $d s^{2}$ has the expression ([UY2])

$$
\begin{equation*}
d s^{2}=\left(1+|g|^{2}\right)^{2}\left|\frac{\mathcal{Q}}{d g}\right|^{2} \tag{6}
\end{equation*}
$$

The hyperbolic Gauss map G, the secondary Gauss map g and the Hopf differential \mathcal{Q} satisfy the following identity ([UY1], [UY3])

$$
\begin{equation*}
S_{g} d z^{2}-S_{G} d z^{2}=2 c \mathcal{Q} \tag{7}
\end{equation*}
$$

where S_{u} denotes the Schwarzian derivative of a holomorphic function u defined by

$$
\begin{equation*}
S_{u}:=\left(\frac{u^{\prime \prime}}{u^{\prime}}\right)^{\prime}-\frac{1}{2}\left(\frac{u^{\prime \prime}}{u^{\prime}}\right)^{2}, \quad\left(u^{\prime}=\frac{d u}{d z}, u^{\prime \prime}=\frac{d^{2} u}{d z^{2}}\right) \tag{8}
\end{equation*}
$$

The pair $(g, \mathcal{Q} / d g)$ is called the Weierstrass data of the CMC-c immersion f.
It is well known that CMC-1 surfaces in $\mathcal{H}^{3}(-1)$ locally correspond to CMC-c surfaces in $\mathcal{H}^{3}\left(-c^{2}\right)$ with the same first fundamental form and the same Hopf differential for any non-zero real number c. As a special limiting case, when $c \rightarrow 0$, the CMC- c surface locally induces a minimal surface with the same first fundamental form and the same Hopf differential. (The secondary Gauss map of the CMC- c surface is the same as the Gauss map of the corresponding minimal surface.) We call this the canonical correspondence. The lift F is related to the Weierstrass data as follows (See [Bry],[UY1] and [UY2].):

$$
F^{-1} d F=c\left(\begin{array}{cc}
g & -g^{2} \tag{9}\\
1 & -g
\end{array}\right) \frac{\mathcal{Q}}{d g}
$$

This analogue of the Weierstrass representation is called the Bryant representation. Since the Weierstrass data is determined by the Hopf differential and the secondary Gauss map, the corresponding minimal immersion $f_{0}: \tilde{M} \rightarrow \mathbf{R}^{3}$ has the expression

$$
f_{0}(z)=\operatorname{Re} \int_{z_{0}}^{z}\left(1-g^{2}, i\left(1+g^{2}\right), 2 g\right) \frac{\mathcal{Q}}{d g}
$$

with the same Weierstrass data $(g, \mathcal{Q} / d g)$.
Suppose that the first fundamental form $d s^{2}$ of the CMC-c immersion f is complete and of finite total curvature. As in the case of minimal surfaces, there exists a compact Riemann surface \bar{M} and a finite number of points $P_{1}, \cdots, P_{N} \in \bar{M}$ such that M is bi-holomorphic to $\bar{M} \backslash\left\{P_{1}, \cdots, P_{N}\right\}$. Each point P_{j} is called an end of the surface. An end of a CMC- c surface
is regular if the hyperbolic Gauss map extends meromorphically across the end; otherwise it is called irregular. A meromorphic function on M is called rational if it extends meromorphically on \bar{M}. For minimal surfaces, the immersion $f_{0}: M \rightarrow \mathbf{R}^{3}$ is called rational if the lift $F_{0}: M \rightarrow \mathbf{C}^{3}$ (such that $f_{0}=F_{0}+\bar{F}_{0}$) extends meromorphically across the ends. Similarly, the CMC-c immersion f is called rational if the lift F into $\operatorname{PSL}(2, \mathbf{C})$ of f is single valued on M and can be extended meromorphically on \bar{M}. When f is H-deformable (namely, it admits a global nontrivial isometric deformation preserving the principal curvatures), then the lift F is single valued on M and the corresponding minimal surface f_{0} is rational. (See [UY3; p.216].) One particular consequence is that the secondary Gauss map g of f is rational. Though the secondary Gauss map g of an H-deformable CMC-c surface is rational, the hyperbolic Gauss map G might have essential singularities. In fact, all of the examples we construct in the next section will have an irregular end. This shows that H-deformable CMC-c surfaces f may not be rational in general. More precisely, the H-deformability and the rationality are mutually independent concepts for $C M C-c$ surfaces in $\mathcal{H}^{3}\left(-c^{2}\right)$. In fact, there are CMC-1 surfaces which admit a rational lift into PSL $(2, \mathbf{C})$ but may not be H-deformable. (See Example 3 in [UY3, $\S 3]$). The following fact is a key to the construction of complete H-deformable CMC-c surfaces.

Lemma 1. Let g and \mathcal{Q} be a rational function and a meromorphic differential, respectively, on a compact Riemann surface \bar{M} such that the symmetric tensor defined by

$$
\begin{equation*}
d s^{2}=\left(1+|g|^{2}\right)^{2}\left|\frac{\mathcal{Q}}{d g}\right|^{2} \tag{10}
\end{equation*}
$$

is complete at the points $\left\{P_{1}, \cdots, P_{N}\right\}(\subset \bar{M})$ and is positive definite on $M:=\bar{M} \backslash\left\{P_{1}, \cdots, P_{N}\right\}$. Suppose that for some non-zero real number $c=c_{0}$, there exists a meromorphic function $G_{c_{0}}$ defined on M such that

$$
\begin{equation*}
S_{g} d z^{2}-S_{G_{c}} d z^{2}=2 c \mathcal{Q} \tag{11}
\end{equation*}
$$

Then there exists a complete $C M C-c_{0}$ immersion $f_{c_{0}}: M \rightarrow \mathcal{H}^{3}\left(-c_{0}^{2}\right)$ with finite total curvature and whose Weierstrass data is $(g, \mathcal{Q} / d g)$. Furthermore, if meromorphic functions G_{c} on M satisfying (11) exist for all $c \in \mathbf{R} \backslash\{0\}$, then the original surface $f_{c_{0}}$ is H-deformable.

Proof. By Theorem 1.6 in [UY3], there exists a unique null meromorphic map (single valued on all of M) $F_{c_{0}}: M \rightarrow \mathrm{PSL}(2, \mathbf{C})$ whose hyperbolic Gauss map and the secondary Gauss map are $G_{c_{0}}$ and g, respectively. We remark that one can, if necessary, explicitly write down $F_{c_{0}}$ in terms of 3 -jets of $G_{c_{0}}$ and g without integration (c.f. Small [S]). We set $f_{c_{0}}=\left(1 / c_{0}\right) F_{c_{0}} F_{c_{0}}^{*}$. By (10), $f_{c_{0}}$ is an $C M C-c_{0}$ immersion on M, and since $d s^{2}$ is the induced metric, $f_{c_{0}}$ has a complete metric. Since the total curvature is 4π times the degree of g, the rationality of g implies the finiteness of the total curvature of f_{0}. This proves the first assertion.

Now we assume a meromorphic function G_{c} on M satisfying (11) exists for each $c \in \mathbf{R} \backslash\{0\}$. Then the immersions $\left(f_{c}\right)_{c \neq 0}$, constructed as above by replacing c_{0} by c, are all single valued on M and have the common Weierstrass data $(g, Q / d g)$. By [UY3, Theorem 3.3], we can conclude that each f_{c} is H-deformable.

3. An analogue of the UP-iteration

First, we recall from $[\mathrm{M}]$ the definition of the UP-iteration for rational minimal surfaces of genus zero. Let $g: \mathbf{C} \rightarrow \mathbf{C} P^{1}$ be a rational function and \mathcal{Q} a meromorphic 2-differential on $\mathbf{C} P^{1}=\mathbf{C} \cup\{\infty\}$, such that the metric given by

$$
\begin{equation*}
d s^{2}=\left(1+|g|^{2}\right)^{2}\left|\frac{\mathcal{Q}}{d g}\right|^{2} \tag{12}
\end{equation*}
$$

is complete at the points $\left\{P_{1}, \cdots, P_{N}, \infty\right\}\left(\subset \mathbf{C} P^{1}\right)$ and is positive definite on $M:=\mathbf{C} P^{1} \backslash$ $\left\{P_{1}, \cdots, P_{N}, \infty\right\}$. Then the map defined by the Weierstrass representation

$$
f(z)=\operatorname{Re} \int_{z_{0}}^{z}\left(1-g^{2}, i\left(1+g^{2}\right), 2 g\right) \frac{\mathcal{Q}}{d g}
$$

is a conformal minimal immersion on the universal cover \tilde{M} of M. If the map

$$
F(z)=\frac{1}{2} \int_{z_{0}}^{z}\left(1-g^{2}, i\left(1+g^{2}\right), 2 g\right) \frac{\mathcal{Q}}{d g}
$$

is a rational map on $\mathbf{C} P^{1}, f$ is called a rational minimal surface on M. In this procedure, $d s^{2}$ is the first fundamental form of the minimal surface, and thus the positivity of the metric $d s^{2}$ is crucial. In fact, if $d s^{2}$ defined by (12) had degenerate points, such points would be branch points of the surface.

We restrict the Hopf differential \mathcal{Q} to the following form

$$
\mathcal{Q}=d z^{2},
$$

where z is the canonical coordinate on \mathbf{C}. By (12), we have

$$
d s^{2}=\left|\frac{1}{g^{\prime}}\right|^{2}\left(1+|g|^{2}\right)^{2}|d z|^{2},
$$

where $g^{\prime}=d g / d z$. In this setting, the metric $d s^{2}$ never degenerates: Let $\left\{P_{1}, \cdots, P_{N}\right\}$ be the union of the zeros of g^{\prime} and the poles of g on \mathbf{C}. Then $d s^{2}$ is complete at $\left\{P_{1}, \cdots, P_{N}\right\}$ and at infinity, ∞, and $d s^{2}$ is positive definite on $\mathbf{C} \backslash\left\{P_{1}, \cdots, P_{N}\right\}$. The Darboux-Bäcklund transformation of g is given by

$$
\hat{g}(z):=\int_{z_{0}}^{z} \frac{d z}{g^{\prime}},
$$

which is globally defined if and only if the integrand has zero residues. If \hat{g} is defined on M, we call \hat{g} rational.

Taking a sequence of Möbius transformations $\left(T_{n}\right)$, we set

$$
f_{n}=\operatorname{Re} \int_{z_{0}}^{z}\left(1-g_{n}^{2}, i\left(1+g_{n}^{2}\right), 2 g_{n}\right) \frac{d z}{g_{n}^{\prime}} \quad(n=0,1,2,3, \ldots),
$$

where

$$
g_{0}=g, \quad g_{n+1}=\widehat{T_{n} \circ g_{n}} \quad(n=0,1,2,3, \ldots) .
$$

The surfaces f_{n} are called the n-th UP-iterates of f_{0}. The following assertion has been shown by the first author.

Theorem 2. (McCune $\left[\mathrm{M}\right.$, Theorem 5.8]) If $g: \mathbf{C} \rightarrow \mathbf{C} P^{1}$ is rational with double branch points, and if its Schwarzian derivative has zero residues, then each UP-iterate f_{n} is a rational minimal surface with Hopf differential $\mathcal{Q}=d z^{2}$ and with rational Gauss map g_{n}.

For example, if we take Enneper's surface as the initial surface, the assumptions in the theorem are satisfied and we can construct various rational minimal surfaces with many ends. (See [M].)

As mentioned in the previous section, minimal surfaces locally correspond to CMC-c surfaces with the same Weierstrass data. We denote by $f_{n, c}$ the corresponding CMC-c immersion associated with f_{n} and call it the $\mathcal{H}^{3}\left(-c^{2}\right)$-correspondence of f_{n}. By definition, $f_{n, c}$ has the secondary Gauss map g_{n} and the Hopf differential $\mathcal{Q}=d z^{2}$. Since the correspondence is local, $f_{n, c}$ may not be single valued on the surface even when f_{n} is rational. In fact, there is a rational minimal surface whose associated CMC-c immersion is not single-valued (See [UY3, §3]). The main result in this paper is as follows:

Theorem 3. If $g: \mathbf{C} \rightarrow \mathbf{C} P^{1}$ is rational with double branch points, and if its Schwarzian derivative has zero residues, then the $\mathcal{H}^{3}\left(-c^{2}\right)$-corresponding $f_{n, c}$ of each UP-iterate f_{n} is an H-deformable CMC-c surface with Hopf differential $\mathcal{Q}=d z^{2}$. The surface $f_{n, c}$ has regular ends at the poles and at the branch points of its Gauss map g_{n}, and it has an irregular end at $z=\infty$.

Moreover, the original UP-iterate f_{n} can be viewed as the limit $\lim _{c \rightarrow 0} f_{n, c}$ in the Poincare ball of radius $1 / c$.

This theorem implies that the UP-iteration has a very strong property: it simultaneously ensures the preservation of the single valued property and the preservation of the H-deformablity for the $\mathcal{H}^{3}\left(-c^{2}\right)$-correspondence. It should be remarked that f_{c} and f_{-c} are non-congruent in general. (See Example below.) To prove the theorem, we first prepare some notation and a lemma.

The Schwarzian derivative $S_{g}(z)$ is single valued on \mathbf{C} and has the following Laurent expansion around a double branch point $z=P$ of g :

$$
S_{g}(z)=-\frac{4}{(z-P)^{2}}+\frac{\beta_{1}}{(z-P)}+\beta_{2}+\beta_{3}(z-P)+\cdots
$$

Each coefficient β_{j} is called the j-th coefficient of $S_{g}(z)$ at $z=P$.
Lemma 4. If $g: \mathbf{C} \rightarrow \mathbf{C} P^{1}$ is rational with double branch points, and if its Schwarzian derivative has zero residues, then the third coefficient of $S_{g}(z)$ vanishes at the branch points of g.

Proof. We first treat the case where g has non-polar double branch points: A non-polar branch point of a rational function $g: \mathbf{C} \rightarrow \mathbf{C} P^{1}$ is a branch point p of g such that $g(p) \neq \infty$. Let $z=P$ be such a branch point of g. Then $g^{\prime}(z)$ has the following expansion at $z=P$

$$
\begin{equation*}
g^{\prime}(z)=b_{2}(z-P)^{2}+b_{3}(z-P)^{3}+b_{4}(z-P)^{4}+\ldots \tag{13}
\end{equation*}
$$

By a direct calculation, we have

$$
S_{g}(z)=-\frac{4}{(z-P)^{2}}-\frac{2 b_{3}}{b_{2}(z-P)}+\left(\frac{b_{3}^{2}}{2 b_{2}^{2}}-\frac{2 b_{4}}{b_{2}}\right)+\left(\frac{b_{3}^{3}}{b_{2}^{3}}-\frac{2 b_{3} b_{4}}{b_{2}^{2}}\right)(z-P)+\ldots
$$

Since S_{g} has zero residues, we have $b_{3}=0$. The third coefficient of $S_{g}(z)$ at $z=P$ is given by

$$
\frac{b_{3}^{3}}{b_{2}^{3}}-\frac{2 b_{3} b_{4}}{b_{2}^{2}}
$$

which vanishes because $b_{3}=0$.
If some of the double branch points are poles, then we can choose a Möbius transformation μ such that $\mu \circ g$ has non-polar double branch points. Applying the arguments above, we see that the third coefficient of $S_{\mu \circ g}(z)$ is zero. Since $S_{\mu \circ g}(z)=S_{g}(z)$, this implies that the third coefficient of $S_{g}(z)$ is zero.

Proof of Theorem 3. We first assume that g_{n-1} has r double branch points, but no other branch points, and also that its Schwarzian has zero residues. Then for any Möbius transformation ν we obtain a map $g_{n}=\nu \widehat{\rho_{n-1}}$. As seen in the proof of [M, Theorem 5.8], there are only r Möbius transformations such that g_{n} does not have double branch points. If ν is such a Möbius transformation, then we may take a sequence of Möbius transformations $\left(\nu_{k}\right)_{k=1,2,3, \ldots}$ such that $\lim _{k \rightarrow \infty} \nu_{k}=\nu$ and such that

$$
g_{n, k}:=\nu_{k} \widehat{\circ g_{n-1}}
$$

has double branch points for each k. Since the maps $g_{n, k}$ converge locally uniformly to the map g_{n}, and since the Schwarzian of a function is a rational expression in terms of the derivatives of that function, the Schwarzians $S_{g_{n, k}}$ also converge locally uniformly to $S_{g_{n}}$. It was shown in [M] that, for each $k, S_{g_{n, k}}$ has zero residues because g_{n-1} has double branch points and because $S_{g_{n-1}}$ has zero residues. Then Lemma 4 implies that the third coefficient of $S_{g_{n, k}}$ vanishes at the branch points of $g_{n, k}$. (The branch points of $g_{n, k}$ will move as k moves and converge to the branch points of g_{n}.)

Let $P_{i}(k), i=1, \ldots, N(k)$ be the branch points of $g_{n, k}$. Note that the poles of $S_{g_{n, k}}$ only occur at the branch points of $g_{n, k}$. We set

$$
M_{k}=\mathbf{C} \backslash\left\{P_{i}(k)\right\}_{i=1}^{N(k)},
$$

and denote by \tilde{M}_{k} its universal covering. Then there exists a holomorphic function $G_{c, n, k}$ on \tilde{M}_{k} such that

$$
\begin{equation*}
S_{G_{c, n, k}}=S_{g_{n, k}}-2 c \tag{14}
\end{equation*}
$$

To see this, consider the ordinary differential equation

$$
\begin{equation*}
\psi^{\prime \prime}(z)+u(z ; c, n, k) \psi(z)=0 \tag{15}
\end{equation*}
$$

where

$$
u(z ; c, n, k)=\frac{1}{2}\left(S_{g_{n, k}}(z)-2 c\right)
$$

Since $u(z ; c, n, k)$ has pole of order 2 at each branch point of $g_{n, k}$, the ordinary differential equation (15) has regular singularities at these points. Expanding $S_{g_{n, k}}$ at the branch point $P_{i}(k)$ for a given i shows that the leading coefficient of $S_{g_{n, k}}$ is -4 (because $g_{n, k}$ has double branch points). Therefore the indicial equation is given by (see appendix)

$$
\lambda^{2}-\lambda-2=(\lambda-2)(\lambda+1)=0
$$

By the appendix, (15) has the two linearly independent solutions $\left\{X_{1}, X_{2}\right\}$ of the form

$$
X_{1}(z)=\left(z-P_{i}\right)^{-1} \sum_{j=0}^{\infty} \xi_{j}\left(z-P_{i}\right)^{j}, \quad X_{2}(z)=\left(z-P_{i}\right)^{2} \sum_{j=0}^{\infty} \eta_{j}\left(z-P_{i}\right)^{j}+\mu X_{1}(z) \log \left(z-P_{i}\right)
$$

where the coefficient μ is called the log-term coefficient. By (iii) of the corollary in the appendix, we have

$$
\mu=\frac{1}{2} \beta_{3}-\frac{1}{4} \beta_{1}\left(\beta_{2}-2 c\right)+\frac{1}{32}\left(\beta_{1}\right)^{3} .
$$

where $\beta_{j}(j=1,2,3)$ is the j-th coefficient of $S_{g_{n, k}}$. Since $S_{g_{n, k}}$ has no residue, we have $\beta_{1}=0$, and by Lemma $4, \beta_{3}$ also vanishes. Thus $\mu=0$. In particular, X_{1} and X_{2} are both single valued around $z=P_{i}$. We have (see [L] or [M])

$$
S_{X_{1} / X_{2}}=S_{g_{n, k}}-2 c
$$

This implies that X_{1} / X_{2} and $G_{c, n, k}$ differ only by a Möbius transformation, and that $G_{c, n, k}$ is meromorphic at $z=P_{i}(k)$. Hence $G_{c, n, k}$ is an entire function.

Then by Lemma 1, there exists CMC- c surface in $\mathcal{H}^{3}\left(-c^{2}\right)$ whose hyperbolic Gauss map and the secondary Gauss map are $G_{c, n, k}$ and $g_{n, k}$, respectively. Since the periods are continuous, taking a limit $k \rightarrow \infty$, we can conclude that the $\mathcal{H}^{3}\left(-c^{2}\right)$-corresponding surface $f_{n, c}$ is also single valued on M. We assumed that g_{n-1} had double branch points, but by using multiple sequences of Möbius transformations, it is enough to assume that our initial Gauss map g had double branch points.

Since c is arbitrary, $f_{n, c}$ is H-deformable by Lemma 1. An end of a CMC-c surface in $\mathcal{H}^{3}\left(-c^{2}\right)$ is regular if and only if the Hopf differential is at most pole of order -2 ([Bry] and [UY1]). Since $f_{n, c}$ has the same first fundamental form and the Hopf differential as f_{n}, the branch points and poles of g_{n} are regular ends. In fact, the metric $d s^{2}$ is complete and the Hopf differential is holomorphic at those points. The metric $d s^{2}$ is also complete at $z=\infty$, but the Hopf differential has pole of order -4 . This implies $z=\infty$ is an irregular end of $f_{n, c}$. In [UY2], it is shown that the associate minimal immersion can be obtained as a limit of associated CMC-c immersion in the Poincare ball of radius $1 / c$ as $c \rightarrow 0$. The final assertion follows from it.

Example 1. For producing concrete examples, Enneper's surface is the initial data used in the UP-iteration. This minimal surface has Weierstrass data $\left(z, d z^{2}\right)$, and the $\mathcal{H}^{3}\left(-c^{2}\right)$ corresponding surface f_{c} has the hyperbolic Gauss map $G(z)=\operatorname{Tanh}(c z)$. Under the transformation $z \mapsto i z$, the first fundamental form $d s^{2}=(1+|z|)^{2}|d z|^{2}$ is unchanged and the Hopf differential changes sign. This implies that f_{c} and f_{-c} are congruent. (The surfaces f_{c} and f_{-c} are congruent if and only if the first fundamental form does not change under the transformation $z \mapsto i z$.) In Figure 1, the original minimal Enneper's surface is shown on the left. The corresponding CMC1 surface f_{1} in $\mathcal{H}^{3}(-1)$, called Enneper's cousin, is shown in the center. To the right, the dual surface $f_{1}^{\#}$ of the Enneper cousin f_{1} is shown. An explicit formula for the lift F can be found in [Bry, p.340]. The surface $f_{1}^{\#}$ is obtained by using the lift F^{-1},

Figure 1. Enneper's surface, its cousin, and the cousin's dual. (The last two pictures are courtesy of Wayne Rossman.)
rather than the lift F of f_{1}, the effect being that the hyperbolic and secondary Gauss maps are interchanged. The dual surface of Enneper's cousin is also a complete surface, but it has infinite total curvature.

Example 2. In applying the UP-iteration to Enneper's surface, there is one parameter of freedom arising from the choice of Möbius transformation. A Möbius transformation ν is composed with the Gauss map $g_{0}(z)=z$, and then the Darboux-Bäcklund transformation is performed to yield the new Gauss map g_{1}. If we choose

$$
\nu=\left(\begin{array}{cc}
0 & -1 \\
1 & k_{1}
\end{array}\right)
$$

then the UP-iterate is

$$
g_{1}=\int \frac{1}{\left(\nu \circ g_{0}\right)^{\prime}(z)}=\int \frac{1}{\left(z+k_{1}\right)^{2}}=k_{1}^{2} z+k_{1} z^{2}+\frac{z^{3}}{3}
$$

up to an additive constant of integration.
Choosing the constant $k_{1}=1$ yields the Gauss map $g(z)=z+z^{2}+z^{3} / 3$, and the first fundamental form is $d s^{2}=\left(1+\left|z+z^{2}+z^{3} / 3\right|^{2}\right)^{2} /\left(\left|1+2 z+z^{2}\right|^{2}\right)$. Since $d s^{2}$ is not invariant under the transformation $z \mapsto i z$, this Gauss map yields non-congruent $\mathcal{H}^{3}(-1)$-corresponding surfaces, f_{1} and f_{-1}. The two hyperbolic Gauss maps are

$$
G_{1}(z)=\frac{-(1+z) \operatorname{Cosh}(1+z)+\operatorname{Sinh}(1+z)}{-\operatorname{Cosh}(1+z)+(1+z) \operatorname{Sinh}(1+z)}
$$

and

$$
G_{-1}(z)=\frac{(1+z) \operatorname{Cos}(1+z)-\operatorname{Sin}(1+z)}{\operatorname{Cos}(1+z)+(1+z) \operatorname{Sin}(1+z)}
$$

with Schwarzians

$$
S_{G_{1}}(z)=-2 \frac{3+2 z+z^{2}}{(1+z)^{2}}
$$

and

$$
S_{G_{-1}}(z)=2 \frac{-1+2 z+z^{2}}{(1+z)^{2}}
$$

respectively. The original minimal surface, along with the $\mathcal{H}^{3}(-1)$ corresponding surface for $c=1$, are shown in Figure 2. The $\mathcal{H}^{3}(-1)$ corresponding surface for $c=-1$ is shown from both front and back in Figure 3.

Figure 2. A first level UP-iterate and one of its $\mathcal{H}^{3}(-1)$-corresponding surfaces.

Figure 3. Two views of another $\mathcal{H}^{3}(-1)$-corresponding surface.

Appendix: A computation of the log term coefficients
We shall discuss on the solution of the ODE with a regular singularity at $z=P(P \in \mathbf{C})$

$$
\begin{equation*}
(z-P)^{2} y^{\prime \prime}(z)-q(z) y(z)=0, \tag{16}
\end{equation*}
$$

where $q(z)=\sum_{j=0}^{\infty} q_{j}(z-P)^{j}\left(q_{j} \in \mathbf{C}\right)$. It is well known that (16) has the two linearly independent solutions $\left\{X_{1}, X_{2}\right\}$ of the form

$$
X_{1}(z)=z^{\lambda_{1}} \sum_{j=0}^{\infty} \xi_{j}(z-P)^{j}, \quad X_{2}(z)=z^{\lambda_{2}} \sum_{j=0}^{\infty} \eta_{j}(z-P)^{j}+\mu X_{1} \log (z-P),
$$

where λ_{1} and λ_{2} are the solutions of the indicial equation of (16),

$$
\lambda^{2}-\lambda-q_{0}=0
$$

explicitly,

$$
\begin{equation*}
\lambda_{1}=\frac{1}{2}\{1+m\}, \quad \lambda_{2}=\frac{1}{2}\{1-m\}, \quad m=\sqrt{1+4 q_{0}} \tag{17}
\end{equation*}
$$

The coefficient μ is called the log-term coefficient at the regular singular point $z=P$, which might be non-zero only when

$$
m:=\lambda_{1}-\lambda_{2} \in \mathbf{Z}
$$

The following assertion holds. (c.f. [CL])
Proposition. Suppose the difference of the solutions of indicial equation $m:=\lambda_{1}-\lambda_{2}$ is a positive integer. Then the log-term coefficient μ is given by

$$
\begin{equation*}
\mu=\frac{1}{m} \sum_{k=0}^{m-1} q_{m-k} a_{k} \tag{18}
\end{equation*}
$$

where

$$
\begin{aligned}
a_{0} & =m \\
a_{j} & =\frac{1}{j(j-m)} \sum_{k=0}^{j-1} q_{j-k} a_{k}
\end{aligned}
$$

By a direct calculation, we obtain the following
Corollary. The solutions of $(z-P)^{2} y^{\prime \prime}(z)-q(z) y(z)=0$ have no log-term at $z=P$ if and only if
(i) $q_{1}=0$ for $m=1$,
(ii) $q_{2}-\left(q_{1}\right)^{2}=0$ for $m=2$,
(iii) $q_{3}-q_{1} q_{2}+\frac{1}{4}\left(q_{1}\right)^{3}=0$ for $m=3$.

Acknowledgements

We would like to thank Wayne Rossman and Beate Semmler for helpful and productive discussions. We also thank Wayne Rossman for providing the images in $\mathcal{H}^{3}(-1)$.

References

[Bry] R. L. Bryant, Surfaces of mean curvature one in hyperbolic space, Astérisque 154-155 (1987), 341-347.
[CL] E. A. Coddington and N. Levinson, Theory of Ordinary Differential Equations.
[L] O. Lehto, Univalent functions and Teichmuller spaces. New York: Springer-Verlag, 1987.
[M] C. McCune, Rational Minimal Surfaces, Preprint.
[S] A. J. Small, Surfaces of Constant Mean Curvature 1 in H^{3} and Algebraic Curves on a Quadric, Proc. Amer. Math. Soc. 122 (1994), 1211-1220.
[UY1] M. Umehara and K. Yamada, Complete surfaces of constant mean curvature-1 in the hyperbolic 3-space, Ann. of Math. 137 (1993), 611-638.
[UY2] M. Umehara and K. Yamada, A parametrization of Weierstrass formulae and perturbation of some complete minimal surfaces of \mathbf{R}^{3} into the hyperbolic 3-space, J. Reine Angew. Math. 432 (1992), 93-116.
[UY3] M. Umehara and K. Yamada, Surfaces of constant mean curvature-c in $H^{3}\left(-c^{2}\right)$ with prescribed hyperbolic Gauss map, Math. Ann. 304 (1996), 203-224.
[UY4] M. Umehara and K. Yamada, A duality on CMC-1 surface in the hyperbolic 3-space and a hyperbolic analogue of the Osserman Inequality, Tsukuba J. Math. 21 (1997), 229-237.

SFB 288, MA 8-5, Technische Universität Berlin, Strasse des 17. Juni 136, 10623 Berlin, Germany
E-mail address: cat@sfb288.math.tu-berlin.de
Department of Mathematics, Hiroshima University, Higashi-Hiroshima 739-8526 Japan
E-mail address: umehara@math.sci.hiroshima-u.ac.jp

[^0]: Date: March 10, 2000.
 1991 Mathematics Subject Classification. 53A10, 53A35, 53C42, 32A27.
 Key words and phrases. minimal surfaces, constant mean curvature surfaces, H-deformable surfaces, Bryant representation, Schwarzian derivatives.

