AN ANALOGUE OF THE UP-ITERATION FOR CONSTANT MEAN CURVATURE ONE SURFACES IN HYPERBOLIC 3-SPACE

CATHERINE MCCUNE AND MASAAKI UMEHARA

1. INTRODUCTION

It is well known that a surface of constant mean curvature in a space form has a 1-parameter family of local isometric deformations preserving the principal curvature functions. If such a local deformation can be extended globally, the surface is called *H*-deformable. We denote by $\mathcal{H}^3(-c^2)$ the hyperbolic 3-space of constant curvature $-c^2$. It is well known that surfaces of constant mean curvature c have quite similar properties to minimal surfaces in \mathbb{R}^3 , in particular, they have an analogue of the Weierstrass representation called the *Bryant representation*. A complete minimal surface of finite total curvature in \mathbb{R}^3 is *H*-deformable if and only if it is rational. However, for CMC-c surfaces in $\mathcal{H}^3(-c^2)$, *H*-deformability is independent of the rationality, and only a few such examples are known (c.f. [UY3]).

Recently, the first author [M] gave a method, called the UP-iteration, for constructing new rational minimal surfaces of genus zero from a given rational minimal surface. In this paper, we shall give an analogue of it for CMC-c surfaces in hyperbolic 3-space $\mathcal{H}^3(-c^2)$, and give countably many non-trivial families of new complete *H*-deformable CMC-c surfaces of finite total curvature in $\mathcal{H}^3(-c^2)$. The hyperbolic 3-space $\mathcal{H}^3(-c^2)$ can be realized as the Poincare ball of radius 1/c. The original UP-iteration can be viewed as the limit of this hyperbolic analogue as $c \to 0$.

2. Preliminaries

Let Herm(2) be the set of 2-dimensional Hermitian matrices. The hyperbolic 3-space can be expressed as ([Bry])

$$\mathcal{H}^{3}(-c^{2}) = \{X \in \operatorname{Herm}(2); \det(X) = 1/c^{2}, \operatorname{trace}(X) > 0\}.$$

Let $f: M \to \mathcal{H}^3(-c^2)$ be a conformal CMC-*c* immersion. We denote by \tilde{M} the universal covering space of M. There exists a null holomorphic immersion

$$F = \begin{pmatrix} A & B \\ C & D \end{pmatrix} : \tilde{M} \to \mathrm{PSL}(2, \mathbf{C})$$

such that $f = (1/c)FF^*$, where $PSL(2, \mathbb{C}) = SL(2, \mathbb{C})/\{\pm 1\}$ and 'null' means that the pull-back by F of the bi-invariant metric on $PSL(2, \mathbb{C})$ vanishes ([Bry]). We call the null holomorphic immersion $F: M \to PSL(2, \mathbb{C})$ the *lift* of f. The lift F has an ambiguity of the right multiplication of the constant matrix in SU(2). Since F is null, it satisfies the identity

(1)
$$\det(F^{-1}F') = 0,$$

where F' = dF/dz, and z is a local complex coordinate.

Date: March 10, 2000.

¹⁹⁹¹ Mathematics Subject Classification. 53A10, 53A35, 53C42, 32A27.

Key words and phrases. minimal surfaces, constant mean curvature surfaces, H-deformable surfaces, Bryant representation, Schwarzian derivatives.

For a CMC-c immersion f, the hyperbolic Gauss map G and the secondary Gauss map g are defined as follows (See [UY4]):

(2)
$$G := \frac{A'}{C'} = \frac{B'}{D'} = \frac{\alpha_{11}^{\#}}{\alpha_{21}^{\#}} = \frac{\alpha_{12}^{\#}}{\alpha_{22}^{\#}},$$

(3)
$$g := -\frac{D'}{C'} = -\frac{B'}{A'} = \frac{\alpha_{11}}{\alpha_{21}} = \frac{\alpha_{12}}{\alpha_{22}},$$

where $(\alpha_{ij}) = F^{-1}F'$ and $(\alpha_{ij}^{\#}) = F(F^{-1})' = -F'F^{-1}$. The hyperbolic Gauss map G is single valued on M, but the secondary Gauss map g is defined on the universal cover \tilde{M} . When we replace the lift F by Fb^{-1} ($b = (b_{ij}) \in SU(2)$), the hyperbolic Gauss map is invariant, but the secondary Gauss map is changed. The new secondary Gauss map \tilde{g} is given by

(4)
$$\tilde{g} := \frac{b_{11}g + b_{12}}{b_{21}g + b_{22}}$$

The geometric meanings of G and g are as follows: Identify the ideal boundary S^2 of $\mathcal{H}^3(-c^2)$ with $\mathbf{C} \cup \{\infty\}$ by stereographic projection. Then the normal geodesic ray emanating from each point z = P of the surface meets the ideal boundary at G(P) ([Bry]). The (2,0)-part \mathcal{Q} of the complexified second fundamental form is called the *Hopf differential* of the immersion f. The second fundamental form h of f is expressed

(5)
$$h = \mathcal{Q} + \bar{\mathcal{Q}} + c \, ds^2,$$

where ds^2 is the first fundamental form. Moreover, the first fundamental form ds^2 has the expression ([UY2])

(6)
$$ds^{2} = (1 + |g|^{2})^{2} \left| \frac{Q}{dg} \right|^{2}.$$

The hyperbolic Gauss map G, the secondary Gauss map g and the Hopf differential Q satisfy the following identity ([UY1], [UY3])

(7)
$$S_g dz^2 - S_G dz^2 = 2c\mathcal{Q},$$

where S_u denotes the Schwarzian derivative of a holomorphic function u defined by

(8)
$$S_u := \left(\frac{u''}{u'}\right)' - \frac{1}{2} \left(\frac{u''}{u'}\right)^2, \qquad (u' = \frac{du}{dz}, \ u'' = \frac{d^2u}{dz^2}).$$

The pair $(g, \mathcal{Q}/dg)$ is called the Weierstrass data of the CMC-c immersion f.

It is well known that CMC-1 surfaces in $\mathcal{H}^3(-1)$ locally correspond to CMC-*c* surfaces in $\mathcal{H}^3(-c^2)$ with the same first fundamental form and the same Hopf differential for any non-zero real number *c*. As a special limiting case, when $c \to 0$, the CMC-*c* surface locally induces a minimal surface with the same first fundamental form and the same Hopf differential. (The secondary Gauss map of the CMC-*c* surface is the same as the Gauss map of the corresponding minimal surface.) We call this the *canonical correspondence*. The lift *F* is related to the Weierstrass data as follows (See [Bry],[UY1] and [UY2].):

(9)
$$F^{-1}dF = c \begin{pmatrix} g & -g^2 \\ 1 & -g \end{pmatrix} \frac{Q}{dg}$$

This analogue of the Weierstrass representation is called the Bryant representation. Since the Weierstrass data is determined by the Hopf differential and the secondary Gauss map, the corresponding minimal immersion $f_0: \tilde{M} \to \mathbf{R}^3$ has the expression

$$f_0(z) = \operatorname{Re} \int_{z_0}^{z} (1 - g^2, i(1 + g^2), 2g) \frac{Q}{dg},$$

with the same Weierstrass data $(g, \mathcal{Q}/dg)$.

Suppose that the first fundamental form ds^2 of the CMC-*c* immersion *f* is complete and of finite total curvature. As in the case of minimal surfaces, there exists a compact Riemann surface \overline{M} and a finite number of points $P_1, \dots, P_N \in \overline{M}$ such that *M* is bi-holomorphic to $\overline{M} \setminus \{P_1, \dots, P_N\}$. Each point P_j is called an *end* of the surface. An end of a CMC-*c* surface is *regular* if the hyperbolic Gauss map extends meromorphically across the end; otherwise it is called *irregular*. A meromorphic function on M is called *rational* if it extends meromorphically on \overline{M} . For minimal surfaces, the immersion $f_0: M \to \mathbf{R}^3$ is called *rational* if the lift $F_0: M \to \mathbf{C}^3$ (such that $f_0 = F_0 + \overline{F_0}$) extends meromorphically across the ends. Similarly, the CMC-c immersion f is called *rational* if the lift F into $PSL(2, \mathbb{C})$ of f is single valued on M and can be extended meromorphically on M. When f is H-deformable (namely, it admits a global nontrivial isometric deformation preserving the principal curvatures), then the lift F is single valued on M and the corresponding minimal surface f_0 is rational. (See [UY3; p.216].) One particular consequence is that the secondary Gauss map g of f is rational. Though the secondary Gauss map q of an H-deformable CMC-c surface is rational, the hyperbolic Gauss map G might have essential singularities. In fact, all of the examples we construct in the next section will have an irregular end. This shows that H-deformable CMC-c surfaces f may not be rational in general. More precisely, the *H*-deformability and the rationality are mutually independent concepts for CMC-c surfaces in $\mathcal{H}^3(-c^2)$. In fact, there are CMC-1 surfaces which admit a rational lift into $PSL(2, \mathbb{C})$ but may not be *H*-deformable. (See Example 3 in [UY3, §3]). The following fact is a key to the construction of complete H-deformable CMC-c surfaces.

Lemma 1. Let g and Q be a rational function and a meromorphic differential, respectively, on a compact Riemann surface \overline{M} such that the symmetric tensor defined by

(10)
$$ds^{2} = (1 + |g|^{2})^{2} \left| \frac{\mathcal{Q}}{dg} \right|^{2}.$$

is complete at the points $\{P_1, \dots, P_N\}$ ($\subset \overline{M}$) and is positive definite on $M := \overline{M} \setminus \{P_1, \dots, P_N\}$. Suppose that for some non-zero real number $c = c_0$, there exists a meromorphic function G_{c_0} defined on M such that

$$S_g dz^2 - S_{G_c} dz^2 = 2c\mathcal{Q}.$$

Then there exists a complete CMC- c_0 immersion $f_{c_0}: M \to \mathcal{H}^3(-c_0^2)$ with finite total curvature and whose Weierstrass data is $(g, \mathcal{Q}/dg)$. Furthermore, if meromorphic functions G_c on Msatisfying (11) exist for all $c \in \mathbf{R} \setminus \{0\}$, then the original surface f_{c_0} is H-deformable.

Proof. By Theorem 1.6 in [UY3], there exists a unique null meromorphic map (single valued on all of M) $F_{c_0}: M \to \text{PSL}(2, \mathbb{C})$ whose hyperbolic Gauss map and the secondary Gauss map are G_{c_0} and g, respectively. We remark that one can, if necessary, explicitly write down F_{c_0} in terms of 3-jets of G_{c_0} and g without integration (c.f. Small [S]). We set $f_{c_0} = (1/c_0)F_{c_0}F_{c_0}^*$. By (10), f_{c_0} is an $CMC-c_0$ immersion on M, and since ds^2 is the induced metric, f_{c_0} has a complete metric. Since the total curvature is 4π times the degree of g, the rationality of g implies the finiteness of the total curvature of f_0 . This proves the first assertion.

Now we assume a meromorphic function G_c on M satisfying (11) exists for each $c \in \mathbf{R} \setminus \{0\}$. Then the immersions $(f_c)_{c\neq 0}$, constructed as above by replacing c_0 by c, are all single valued on M and have the common Weierstrass data (g, Q/dg). By [UY3, Theorem 3.3], we can conclude that each f_c is H-deformable.

3. An analogue of the UP-iteration

First, we recall from [M] the definition of the UP-iteration for rational minimal surfaces of genus zero. Let $g : \mathbf{C} \to \mathbf{C}P^1$ be a rational function and \mathcal{Q} a meromorphic 2-differential on $\mathbf{C}P^1 = \mathbf{C} \cup \{\infty\}$, such that the metric given by

(12)
$$ds^{2} = (1+|g|^{2})^{2} \left| \frac{\mathcal{Q}}{dg} \right|^{2}.$$

is complete at the points $\{P_1, \dots, P_N, \infty\}$ ($\subset \mathbb{C}P^1$) and is positive definite on $M := \mathbb{C}P^1 \setminus \{P_1, \dots, P_N, \infty\}$. Then the map defined by the Weierstrass representation

$$f(z) = \operatorname{Re} \int_{z_0}^{z} (1 - g^2, i(1 + g^2), 2g) \frac{Q}{dg}$$

is a conformal minimal immersion on the universal cover \tilde{M} of M. If the map

$$F(z) = \frac{1}{2} \int_{z_0}^{z} (1 - g^2, i(1 + g^2), 2g) \frac{Q}{dg}$$

is a rational map on $\mathbb{C}P^1$, f is called a rational minimal surface on M. In this procedure, ds^2 is the first fundamental form of the minimal surface, and thus the positivity of the metric ds^2 is crucial. In fact, if ds^2 defined by (12) had degenerate points, such points would be branch points of the surface.

We restrict the Hopf differential Q to the following form

$$\mathcal{Q} = dz^2,$$

where z is the canonical coordinate on **C**. By (12), we have

$$ds^{2} = \left|\frac{1}{g'}\right|^{2} (1 + |g|^{2})^{2} |dz|^{2},$$

where g' = dg/dz. In this setting, the metric ds^2 never degenerates: Let $\{P_1, \dots, P_N\}$ be the union of the zeros of g' and the poles of g on \mathbf{C} . Then ds^2 is complete at $\{P_1, \dots, P_N\}$ and at infinity, ∞ , and ds^2 is positive definite on $\mathbf{C} \setminus \{P_1, \dots, P_N\}$. The Darboux-Bäcklund transformation of g is given by

$$\hat{g}(z) := \int_{z_0}^z \frac{dz}{g'},$$

which is globally defined if and only if the integrand has zero residues. If \hat{g} is defined on M, we call \hat{g} rational.

Taking a sequence of Möbius transformations (T_n) , we set

j

$$f_n = \operatorname{Re} \int_{z_0}^{z} (1 - g_n^2, i(1 + g_n^2), 2g_n) \frac{dz}{g'_n}$$
 $(n = 0, 1, 2, 3, ...),$

where

$$g_0 = g,$$
 $g_{n+1} = \widehat{T_n \circ g_n}$ $(n = 0, 1, 2, 3, ...).$

The surfaces f_n are called the *n*-th *UP*-iterates of f_0 . The following assertion has been shown by the first author.

Theorem 2. (McCune [M, Theorem 5.8]) If $g : \mathbb{C} \to \mathbb{C}P^1$ is rational with double branch points, and if its Schwarzian derivative has zero residues, then each UP-iterate f_n is a rational minimal surface with Hopf differential $\mathcal{Q} = dz^2$ and with rational Gauss map g_n .

For example, if we take Enneper's surface as the initial surface, the assumptions in the theorem are satisfied and we can construct various rational minimal surfaces with many ends. (See [M].)

As mentioned in the previous section, minimal surfaces locally correspond to CMC-*c* surfaces with the same Weierstrass data. We denote by $f_{n,c}$ the corresponding CMC-*c* immersion associated with f_n and call it the $\mathcal{H}^3(-c^2)$ -correspondence of f_n . By definition, $f_{n,c}$ has the secondary Gauss map g_n and the Hopf differential $\mathcal{Q} = dz^2$. Since the correspondence is local, $f_{n,c}$ may not be single valued on the surface even when f_n is rational. In fact, there is a rational minimal surface whose associated CMC-*c* immersion is not single-valued (See [UY3, §3]). The main result in this paper is as follows:

Theorem 3. If $g : \mathbf{C} \to \mathbf{C}P^1$ is rational with double branch points, and if its Schwarzian derivative has zero residues, then the $\mathcal{H}^3(-c^2)$ -corresponding $f_{n,c}$ of each UP-iterate f_n is an H-deformable CMC-c surface with Hopf differential $\mathcal{Q} = dz^2$. The surface $f_{n,c}$ has regular ends at the poles and at the branch points of its Gauss map g_n , and it has an irregular end at $z = \infty$.

Moreover, the original UP-iterate f_n can be viewed as the limit $\lim_{c\to 0} f_{n,c}$ in the Poincare ball of radius 1/c.

This theorem implies that the UP-iteration has a very strong property: it simultaneously ensures the preservation of the single valued property and the preservation of the *H*-deformability for the $\mathcal{H}^3(-c^2)$ -correspondence. It should be remarked that f_c and f_{-c} are non-congruent in general. (See Example below.) To prove the theorem, we first prepare some notation and a lemma.

The Schwarzian derivative $S_g(z)$ is single valued on **C** and has the following Laurent expansion around a double branch point z = P of g:

$$S_g(z) = -\frac{4}{(z-P)^2} + \frac{\beta_1}{(z-P)} + \beta_2 + \beta_3(z-P) + \cdots$$

Each coefficient β_j is called the *j*-th coefficient of $S_g(z)$ at z = P.

Lemma 4. If $g : \mathbf{C} \to \mathbf{C}P^1$ is rational with double branch points, and if its Schwarzian derivative has zero residues, then the third coefficient of $S_g(z)$ vanishes at the branch points of g.

Proof. We first treat the case where g has non-polar double branch points: A non-polar branch point of a rational function $g: \mathbb{C} \to \mathbb{C}P^1$ is a branch point p of g such that $g(p) \neq \infty$. Let z = P be such a branch point of g. Then g'(z) has the following expansion at z = P

(13)
$$g'(z) = b_2(z-P)^2 + b_3(z-P)^3 + b_4(z-P)^4 + \dots$$

By a direct calculation, we have

$$S_g(z) = -\frac{4}{(z-P)^2} - \frac{2b_3}{b_2(z-P)} + \left(\frac{b_3^2}{2b_2^2} - \frac{2b_4}{b_2}\right) + \left(\frac{b_3^3}{b_2^3} - \frac{2b_3b_4}{b_2^2}\right)(z-P) + \dots$$

Since S_g has zero residues, we have $b_3 = 0$. The third coefficient of $S_g(z)$ at z = P is given by

$$\frac{b_3^3}{b_2^3} - \frac{2b_3b_4}{b_2^2}$$

which vanishes because $b_3 = 0$.

If some of the double branch points are poles, then we can choose a Möbius transformation μ such that $\mu \circ g$ has non-polar double branch points. Applying the arguments above, we see that the third coefficient of $S_{\mu \circ g}(z)$ is zero. Since $S_{\mu \circ g}(z) = S_g(z)$, this implies that the third coefficient of $S_g(z)$ is zero.

Proof of Theorem 3. We first assume that g_{n-1} has r double branch points, but no other branch points, and also that its Schwarzian has zero residues. Then for any Möbius transformation ν we obtain a map $g_n = \nu \circ \widehat{g_{n-1}}$. As seen in the proof of [M, Theorem 5.8], there are only rMöbius transformations such that g_n does not have double branch points. If ν is such a Möbius transformation, then we may take a sequence of Möbius transformations $(\nu_k)_{k=1,2,3,\ldots}$ such that $\lim_{k\to\infty} \nu_k = \nu$ and such that

$$g_{n,k} := \nu_k \circ g_{n-1}$$

has double branch points for each k. Since the maps $g_{n,k}$ converge locally uniformly to the map g_n , and since the Schwarzian of a function is a rational expression in terms of the derivatives of that function, the Schwarzians $S_{g_{n,k}}$ also converge locally uniformly to S_{g_n} . It was shown in [M] that, for each k, $S_{g_{n,k}}$ has zero residues because g_{n-1} has double branch points and because $S_{g_{n-1}}$ has zero residues. Then Lemma 4 implies that the third coefficient of $S_{g_{n,k}}$ vanishes at the branch points of $g_{n,k}$. (The branch points of $g_{n,k}$ will move as k moves and converge to the branch points of g_n .)

Let $P_i(k)$, i = 1, ..., N(k) be the branch points of $g_{n,k}$. Note that the poles of $S_{g_{n,k}}$ only occur at the branch points of $g_{n,k}$. We set

$$M_k = \mathbf{C} \setminus \{P_i(k)\}_{i=1}^{N(k)},\,$$

and denote by \tilde{M}_k its universal covering. Then there exists a holomorphic function $G_{c,n,k}$ on \tilde{M}_k such that

(14)
$$S_{G_{c,n,k}} = S_{g_{n,k}} - 2c.$$

To see this, consider the ordinary differential equation

(15)
$$\psi''(z) + u(z; c, n, k)\psi(z) = 0,$$

where

$$u(z; c, n, k) = \frac{1}{2} (S_{g_{n,k}}(z) - 2c).$$

Since u(z; c, n, k) has pole of order 2 at each branch point of $g_{n,k}$, the ordinary differential equation (15) has regular singularities at these points. Expanding $S_{g_{n,k}}$ at the branch point $P_i(k)$ for a given *i* shows that the leading coefficient of $S_{g_{n,k}}$ is -4 (because $g_{n,k}$ has double branch points). Therefore the indicial equation is given by (see appendix)

$$\lambda^2 - \lambda - 2 = (\lambda - 2)(\lambda + 1) = 0.$$

By the appendix, (15) has the two linearly independent solutions $\{X_1, X_2\}$ of the form

$$X_1(z) = (z - P_i)^{-1} \sum_{j=0}^{\infty} \xi_j (z - P_i)^j, \quad X_2(z) = (z - P_i)^2 \sum_{j=0}^{\infty} \eta_j (z - P_i)^j + \mu X_1(z) \log(z - P_i),$$

where the coefficient μ is called *the log-term coefficient*. By (iii) of the corollary in the appendix, we have

$$\mu = \frac{1}{2}\beta_3 - \frac{1}{4}\beta_1(\beta_2 - 2c) + \frac{1}{32}(\beta_1)^3.$$

where β_j (j = 1, 2, 3) is the *j*-th coefficient of $S_{g_{n,k}}$. Since $S_{g_{n,k}}$ has no residue, we have $\beta_1 = 0$, and by Lemma 4, β_3 also vanishes. Thus $\mu = 0$. In particular, X_1 and X_2 are both single valued around $z = P_i$. We have (see [L] or [M])

$$S_{X_1/X_2} = S_{g_{n,k}} - 2c.$$

This implies that X_1/X_2 and $G_{c,n,k}$ differ only by a Möbius transformation, and that $G_{c,n,k}$ is meromorphic at $z = P_i(k)$. Hence $G_{c,n,k}$ is an entire function.

Then by Lemma 1, there exists CMC-*c* surface in $\mathcal{H}^3(-c^2)$ whose hyperbolic Gauss map and the secondary Gauss map are $G_{c,n,k}$ and $g_{n,k}$, respectively. Since the periods are continuous, taking a limit $k \to \infty$, we can conclude that the $\mathcal{H}^3(-c^2)$ -corresponding surface $f_{n,c}$ is also single valued on M. We assumed that g_{n-1} had double branch points, but by using multiple sequences of Möbius transformations, it is enough to assume that our initial Gauss map g had double branch points.

Since c is arbitrary, $f_{n,c}$ is *H*-deformable by Lemma 1. An end of a CMC-c surface in $\mathcal{H}^3(-c^2)$ is regular if and only if the Hopf differential is at most pole of order -2 ([Bry] and [UY1]). Since $f_{n,c}$ has the same first fundamental form and the Hopf differential as f_n , the branch points and poles of g_n are regular ends. In fact, the metric ds^2 is complete and the Hopf differential is holomorphic at those points. The metric ds^2 is also complete at $z = \infty$, but the Hopf differential has pole of order -4. This implies $z = \infty$ is an irregular end of $f_{n,c}$. In [UY2], it is shown that the associate minimal immersion can be obtained as a limit of associated CMC-c immersion in the Poincare ball of radius 1/c as $c \to 0$. The final assertion follows from it.

Example 1. For producing concrete examples, Enneper's surface is the initial data used in the UP-iteration. This minimal surface has Weierstrass data (z, dz^2) , and the $\mathcal{H}^3(-c^2)$ corresponding surface f_c has the hyperbolic Gauss map G(z) = Tanh(cz). Under the transformation $z \mapsto iz$, the first fundamental form $ds^2 = (1 + |z|)^2 |dz|^2$ is unchanged and the Hopf differential changes sign. This implies that f_c and f_{-c} are congruent. (The surfaces f_c and f_{-c} are congruent if and only if the first fundamental form does not change under the transformation $z \mapsto iz$.) In Figure 1, the original minimal Enneper's surface is shown on the left. The corresponding CMC1 surface f_1 in $\mathcal{H}^3(-1)$, called Enneper's cousin, is shown in the center. To the right, the dual surface $f_1^{\#}$ of the Enneper cousin f_1 is shown. An explicit formula for the lift F can be found in [Bry, p.340]. The surface $f_1^{\#}$ is obtained by using the lift F^{-1} ,

FIGURE 1. Enneper's surface, its cousin, and the cousin's dual. (The last two pictures are courtesy of Wayne Rossman.)

rather than the lift F of f_1 , the effect being that the hyperbolic and secondary Gauss maps are interchanged. The dual surface of Enneper's cousin is also a complete surface, but it has infinite total curvature.

Example 2. In applying the UP-iteration to Enneper's surface, there is one parameter of freedom arising from the choice of Möbius transformation. A Möbius transformation ν is composed with the Gauss map $g_0(z) = z$, and then the Darboux-Bäcklund transformation is performed to yield the new Gauss map g_1 . If we choose

$$\nu = \left(\begin{array}{cc} 0 & -1 \\ 1 & k_1 \end{array}\right),$$

then the UP-iterate is

$$g_1 = \int \frac{1}{(\nu \circ g_0)'(z)} = \int \frac{1}{(z+k_1)^2} = k_1^2 z + k_1 z^2 + \frac{z^3}{3}$$

up to an additive constant of integration.

Choosing the constant $k_1 = 1$ yields the Gauss map $g(z) = z + z^2 + z^3/3$, and the first fundamental form is $ds^2 = (1 + |z + z^2 + z^3/3|^2)^2/(|1 + 2z + z^2|^2)$. Since ds^2 is not invariant under the transformation $z \mapsto iz$, this Gauss map yields non-congruent $\mathcal{H}^3(-1)$ -corresponding surfaces, f_1 and f_{-1} . The two hyperbolic Gauss maps are

$$G_1(z) = \frac{-(1+z)Cosh(1+z) + Sinh(1+z)}{-Cosh(1+z) + (1+z)Sinh(1+z)}$$

and

$$G_{-1}(z) = \frac{(1+z)Cos(1+z) - Sin(1+z)}{Cos(1+z) + (1+z)Sin(1+z)},$$

with Schwarzians

$$S_{G_1}(z) = -2\frac{3+2z+z^2}{(1+z)^2}$$

 and

$$S_{G_{-1}}(z) = 2\frac{-1+2z+z^2}{(1+z)^2},$$

respectively. The original minimal surface, along with the $\mathcal{H}^3(-1)$ corresponding surface for c = 1, are shown in Figure 2. The $\mathcal{H}^3(-1)$ corresponding surface for c = -1 is shown from both front and back in Figure 3.

FIGURE 2. A first level UP-iterate and one of its $\mathcal{H}^3(-1)$ -corresponding surfaces.

FIGURE 3. Two views of another $\mathcal{H}^3(-1)$ -corresponding surface.

APPENDIX: A COMPUTATION OF THE LOG TERM COEFFICIENTS

We shall discuss on the solution of the ODE with a regular singularity at z = P ($P \in \mathbf{C}$)

(16)
$$(z-P)^2 y''(z) - q(z)y(z) = 0$$

where $q(z) = \sum_{j=0}^{\infty} q_j (z-P)^j$ $(q_j \in \mathbf{C})$. It is well known that (16) has the two linearly independent solutions $\{X_1, X_2\}$ of the form

$$X_1(z) = z^{\lambda_1} \sum_{j=0}^{\infty} \xi_j (z-P)^j, \qquad X_2(z) = z^{\lambda_2} \sum_{j=0}^{\infty} \eta_j (z-P)^j + \mu X_1 \log(z-P),$$

where λ_1 and λ_2 are the solutions of the indicial equation of (16),

$$\lambda^2 - \lambda - q_0 = 0;$$

explicitly,

(17)
$$\lambda_1 = \frac{1}{2} \{1+m\}, \quad \lambda_2 = \frac{1}{2} \{1-m\}, \quad m = \sqrt{1+4q_0}$$

The coefficient μ is called the log-term coefficient at the regular singular point z = P, which might be non-zero only when

$$m := \lambda_1 - \lambda_2 \in \mathbf{Z}.$$

The following assertion holds. (c.f. [CL])

Proposition. Suppose the difference of the solutions of indicial equation $m := \lambda_1 - \lambda_2$ is a positive integer. Then the log-term coefficient μ is given by

(18)
$$\mu = \frac{1}{m} \sum_{k=0}^{m-1} q_{m-k} a_k$$

where

$$a_0 = m$$

 $a_j = \frac{1}{j(j-m)} \sum_{k=0}^{j-1} q_{j-k} a_k$

By a direct calculation, we obtain the following

Corollary. The solutions of $(z - P)^2 y''(z) - q(z)y(z) = 0$ have no log-term at z = P if and only if

- (i) $q_1 = 0$ for m = 1,
- (ii) $q_2 (q_1)^2 = 0$ for m = 2,
- (iii) $q_3 q_1q_2 + \frac{1}{4}(q_1)^3 = 0$ for m = 3.

ACKNOWLEDGEMENTS

We would like to thank Wayne Rossman and Beate Semmler for helpful and productive discussions. We also thank Wayne Rossman for providing the images in $\mathcal{H}^3(-1)$.

References

- [Bry] R. L. Bryant, Surfaces of mean curvature one in hyperbolic space, Astérisque 154-155 (1987), 341-347.
- [CL] E. A. Coddington and N. Levinson, THEORY OF ORDINARY DIFFERENTIAL EQUATIONS.
- [L] O. Lehto, UNIVALENT FUNCTIONS AND TEICHMULLER SPACES. New York: Springer-Verlag, 1987.
- [M] C. McCune, Rational Minimal Surfaces, Preprint.
- [S] A. J. Small, Surfaces of Constant Mean Curvature 1 in H³ and Algebraic Curves on a Quadric, Proc. Amer. Math. Soc. 122 (1994), 1211–1220.
- [UY1] M. Umehara and K. Yamada, Complete surfaces of constant mean curvature-1 in the hyperbolic 3-space, Ann. of Math. 137 (1993), 611–638.
- [UY2] M. Umehara and K. Yamada, A parametrization of Weierstrass formulae and perturbation of some complete minimal surfaces of \mathbb{R}^3 into the hyperbolic 3-space, J. Reine Angew. Math. **432** (1992), 93-116.
- [UY3] M. Umehara and K. Yamada, Surfaces of constant mean curvature-c in $H^3(-c^2)$ with prescribed hyperbolic Gauss map, Math. Ann. **304** (1996), 203–224.
- [UY4] M. Umehara and K. Yamada, A duality on CMC-1 surface in the hyperbolic 3-space and a hyperbolic analogue of the Osserman Inequality, Tsukuba J. Math. 21 (1997), 229-237.

SFB 288, MA 8-5, TECHNISCHE UNIVERSITÄT BERLIN, STRASSE DES 17. JUNI 136, 10623 BERLIN, GERMANY *E-mail address*: cat@sfb288.math.tu-berlin.de

DEPARTMENT OF MATHEMATICS, HIROSHIMA UNIVERSITY, HIGASHI-HIROSHIMA 739-8526 JAPAN *E-mail address*: umehara@math.sci.hiroshima-u.ac.jp