29,670 research outputs found

    Maximum entropy generation in open systems: the Fourth Law?

    Full text link
    This paper develops an analytical and rigorous formulation of the maximum entropy generation principle. The result is suggested as the Fourth Law of Thermodynamics

    Entropy generation and jet engine optimization

    Full text link
    In 2009, it was shown that, with an original approach to hydrodynamic cavitation, a phenomenological model was realized in order to compute some of the physical parameters needed for the design of the most common technological applications (turbo-machinery, etc.) with an economical saving in planning because this analysis could allow engineers to reduce the experimental tests and the consequent costs in the design process. Here the same approach has been used to obtain range of some physical quantity for jet engine optimization

    Hilbert Irreducibility above algberaic groups

    Full text link
    The paper offers versions of Hilbert's Irreducibility Theorem for the lifting of points in a cyclic subgroup of an algebraic group to a ramified cover. A version of Bertini Theorem in this context is also obtained.Comment: 22 page

    Effective Field Theory Methods in Gravitational Physics and Tests of Gravity

    Full text link
    In this PhD thesis I make use of the "Effective Field Theory of Gravity for Extended Objects" by Goldberger and Rothstein in order to investigate theories of gravity and to take a different point of view on the physical information that can be extracted from experiments. In the first work I present, I study a scalar-tensor theory of gravity and I address the renormalization of the energy-momentum tensor for point-like and string-like sources. The second and third study I report are set in the context of testing gravity. So far experiments have probed dynamical regimes only up to order (v/c)^5 in the post-Newtonian expansion, which corresponds to the very first term of the radiative sector in General Relativity. In contrast, by means of gravitational-wave astronomy, one aims at testing General Relativity up to (v/c)^(12)! It is then relevant to envisage testing frameworks which are appropriate to this strong-field/radiative regime. In the last two chapters of this thesis a new such framework is presented. Using the effective field theory approach, General Relativity non-linearities are described by Feynman diagrams in which classical gravitons interact with matter sources and among themselves. Tagging the self-interaction vertices of gravitons with parameters it is possible, for example, to translate the measure of the period decay of Hulse-Taylor pulsar in a constraint on the three-graviton vertex at the 0.1% level; for comparison, LEP constraints on the triple-gauge-boson couplings of weak interactions are accurate at 3%. With future observations of gravitational waves, higher order graviton vertices can in principle be constrained through a Fisher matrix analysis.Comment: This PhD Thesis has been conducted at the University of Geneva (Switzerland) under the direction of Professor Michele Maggiore and the codirection of Doctor Riccardo Sturani. Version 2: abstract slightly changed; one typo corrected; layout issue fixe
    • …
    corecore