8 research outputs found

    Commentary on the Integration of Model Sharing and Reproducibility Analysis to Scholarly Publishing Workflow in Computational Biomechanics

    Get PDF
    © 1964-2012 IEEE.Objective: The overall goal of this paper is to demonstrate that dissemination of models and analyses for assessing the reproducibility of simulation results can be incorporated in the scientific review process in biomechanics. Methods: As part of a special issue on model sharing and reproducibility in the IEEE Transactions on Biomedical Engineering, two manuscripts on computational biomechanics were submitted: Rajagopal et al., IEEE Trans. Biomed. Eng., 2016 and Schmitz and Piovesan, IEEE Trans. Biomed. Eng., 2016. Models used in these studies were shared with the scientific reviewers and the public. In addition to the standard review of the manuscripts, the reviewers downloaded the models and performed simulations that reproduced results reported in the studies. Results: There was general agreement between simulation results of the authors and those of the reviewers. Discrepancies were resolved during the necessary revisions. The manuscripts and instructions for download and simulation were updated in response to the reviewers' feedback; changes that may otherwise have been missed if explicit model sharing and simulation reproducibility analysis was not conducted in the review process. Increased burden on the authors and the reviewers, to facilitate model sharing and to repeat simulations, were noted. Conclusion: When the authors of computational biomechanics studies provide access to models and data, the scientific reviewers can download and thoroughly explore the model, perform simulations, and evaluate simulation reproducibility beyond the traditional manuscript-only review process. Significance: Model sharing and reproducibility analysis in scholarly publishing will result in a more rigorous review process, which will enhance the quality of modeling and simulation studies and inform future users of computational models

    Age-related changes in gait biomechanics and their impact on the metabolic cost of walking: Report from a National Institute on Aging workshop

    Get PDF
    Changes in old age that contribute to the complex issue of an increased metabolic cost of walking (mass-specific energy cost per unit distance traveled) in older adults appear to center at least in part on changes in gait biomechanics. However, age-related changes in energy metabolism, neuromuscular function and connective tissue properties also likely contribute to this problem, of which the consequences are poor mobility and increased risk of inactivity-related disease and disability. The U.S. National Institute on Aging convened a workshop in September 2021 with an interdisciplinary group of scientists to address the gaps in research related to the mechanisms and consequences of changes in mobility in old age. The goal of the workshop was to identify promising ways to move the field forward toward improving gait performance, decreasing energy cost, and enhancing mobility for older adults. This report summarizes the workshop and brings multidisciplinary insight into the known and potential causes and consequences of age-related changes in gait biomechanics. We highlight how gait mechanics and energy cost change with aging, the potential neuromuscular mechanisms and role of connective tissue in these changes, and cutting-edge interventions and technologies that may be used to measure and improve gait and mobility in older adults. Key gaps in the literature that warrant targeted research in the future are identified and discussed
    corecore