36 research outputs found

    Male Genital Tract Development: looking at the protein side of life

    Get PDF
    __Abstract__ Androgens regulate a large number of developmental processes, starting in fetal life and going on all the way through puberty. The action of androgens is essential for development of the male genital tract in the embryo, and development of secondary male characteristics at puberty. In addition, androgens are important for maintenance of normal male functions in adulthood, such as spermatogenesis, sexual libido, and other aspects of the male phenotype. Lack of androgens or androgen action during embryonic development inevitably results in partial or more complete lack of virilization or feminization of the genital tract. Primary sex determination is strictly chromosomal, while gonadal hormones and their downstream effects are responsible for differentiation of genital tract tissues. This chapter describes the ontogeny of sex determination and differentiation, and the factors involved in androgen-regulated genital tract development. Furthermore, androgen receptor function and mechanism of action is described in more detail, as well as the involvement of the androgen receptor in different pathological conditions. Mouse models are being widely used to study processes and factors involved in genital tract development, and therefore throughout this thesis the situation for the mouse will be outlined and, where applicable, observations in humans will be referred to

    Identification of a putative protein-profile associating with tamoxifen therapy-resistance in breast cancer

    Get PDF
    Tamoxifen-resistance is a major cause of death in patients with recurrent breast cancer. Current clinical parameters can correctly predict therapy response in only half of the treated patients. Identification of proteins that associate with tamoxifen-resistance is a first step towards better response prediction and tailored treatment of patients. In the present study we aimed to identify putative protein biomarkers indicative of tamoxifen therapy-resistance in breast cancer, using nanoLC-FTICR MS. Comparative proteome analysis was performed on ~5,500 pooled tumor cells obtained through laser capture microdissection from two independently processed data sets (n=24 and n=27) of tamoxifen therapy-sensitive and -resistant tumors. Peptide and protein identifications were acquired by matching mass and elution time features to information in previously generated accurate mass and time tag reference data bases. A total of 17,263 unique peptides were identified that corresponded to 2,556 non-redundant proteins identified with >=2 peptides. From this total, 1,713 protein

    Global proteomic characterization of microdissected estrogen receptor positive breast tumors

    Get PDF
    We here describe two proteomic datasets deposited in ProteomeXchange via PRIDE partner repository [1] with dataset identifiers PXD000484 (defined as "training") and PXD000485 (defined as "test") that have been used for the development of a tamoxifen outcome predictive signature [2]. Both datasets comprised 56 fresh frozen estrogen receptor (ER) positive primary breast tumor specimens derived from patients who received tamoxifen as first line therapy for recurrent disease. Patient groups were defined based on time to progression (TTP) after start of tamoxifen therapy (6 months cutoff): 32 good and 24 poor treatment outcome patients were comprised in the training set, respectively. The test set included 41 good and 15 poor treatment outcome patients. All specimens were subjected to laser capture microdissection (LCM) to enrich for epithelial tumor cells prior to high resolution mass spectrometric (MS) analysis. Protein identificat

    Proteomics pipeline for biomarker discovery of laser capture microdissected breast cancer tissue

    Get PDF
    Mass spectrometry (MS)-based label-free proteomics offers an unbiased approach to screen biomarkers related to disease progression and therapy-resistance of breast cancer on the global scale. However, multi-step sample preparation can introduce large variation in generated data, while inappropriate statistical methods will lead to false positive hits. All these issues have hampered the identification of reliable protein markers. A workflow, which integrates reproducible and robust sample preparation and data handling methods, is highly desirable in clinical proteomics investigations. Here we describe a label-free tissue proteomics pipeline, which encompasses laser capture microdissection (LCM) followed by nanoscale liquid chromatography and high resolution MS. This pipeline routinely identifies on average ̃10,000 peptides corresponding to ̃1,800 proteins from sub-microgram amounts of protein extracted from ̃4,000 LCM breast cancer epithelial cells. Highly reproducible abundance data were generated from different technical and biological replicates. As a proof-of-principle, comparative proteome analysis was performed on estrogen receptor a positive or negative (ER+/-) samples, and commonly known differentially expressed proteins related to ER expression in breast cancer were identified. Therefore, we show that our tissue proteomics pipeline is robust and applicable for the identification of breast cancer specific protein markers

    Phosphoserine aminotransferase 1 is associated to poor outcome on tamoxifen therapy in recurrent breast cancer

    Get PDF
    In a previous study, we detected a significant association between phosphoserine aminotransferase 1 (PSAT1) hyper-methylation and mRNA levels to outcome to tamoxifen treatment in recurrent disease. We here aimed to study the association of PSAT1 protein levels to outcome upon tamoxifen treatment and to obtain more insight in its role in tamoxifen resistance. A cohort of ER positive, hormonal therapy naïve primary breast carcinomas was immunohistochemically (IHC) stained for PSAT1. Staining was analyzed for association with patient's time to progression (TTP) and overall response on first-line tamoxifen for recurrent disease. PSAT1 mRNA levels were also assessed by reverse transcriptase quantitative polymerase chain reaction (RT-qPCR; n = 161) and Affymetrix GeneChip (n = 155). Association of PSAT1 to biological pathways on tamoxifen outcome were assessed by global test. PSAT1 protein and mRNA levels were significantly associated to poor outcome to tamoxifen treatment. When comparing PSAT1

    4-protein signature predicting tamoxifen treatment outcome in recurrent breast cancer

    Get PDF
    Estrogen receptor (ER) positive tumors represent the majority of breast malignancies, and are effectively treated with hormonal therapies, such as tamoxifen. However, in the recurrent disease resistance to tamoxifen therapy is common and a major cause of death. In recent years, in-depth proteome analyses have enabled identification of clinically useful biomarkers, particularly, when heterogeneity in complex tumor tissue was reduced using laser capture microdissection (LCM). In the current study, we performed high resolution proteomic analysis on two cohorts of ER positive breast tumors derived from patients who either manifested good or poor outcome to tamoxifen treatment upon recurrence. A total of 112 fresh frozen tumors were collected from multiple medical centers and divided into two sets: an in-house training and a multi-center test set. Epithelial tumor cells were enriched with LCM and analyzed by nano-LC Orbitrap mass spectrometry (MS), which yielded >3000 and >4000 quantified proteins in the training and test sets, respectively. Raw data are available via ProteomeXchange with identifiers PXD000484 and PXD000485. Statistical analysis showed differential abundance of 99 proteins, of which a subset of 4 proteins was selected through a multivariate step-down to develop a predictor for tamoxifen treatment outcome. The 4-protein signature significantly predicted poor outcome patients in the test set, independent of predictive histopathological characteristics (hazard ratio [HR] = 2.17; 95% confidence interval [CI] = 1.15 to 4.17; multivariate Cox regression p value = 0.017). Immunohistochemical (IHC) staining of PDCD4, one of the signature proteins, on an independent set of formalin-fixed paraffin-embedded tumor tissues provided and independent technical validation (HR = 0.72; 95% CI = 0.57 to 0.92; multivariate Cox regression p value = 0.009). We hereby report the first validated protein predictor for tamoxifen treatment outcome in recurrent ER-positive breast cancer. IHC further showed that PDCD4 is an independent marker

    Int6 reduction activates stromal fibroblasts to enhance transforming activity in breast epithelial cells

    Get PDF
    Background: The INT6 gene was first discovered as a site of integration in mouse mammary tumors by the mouse mammary tumor virus; however, INT6's role in the development of human breast cancer remains largely unknown. By gene silencing, we have previously shown that repressing INT6 promotes transforming activity in untransformed human mammary epithelial cells. In the present study, guided by microarray data of human tumors, we have discovered a role of Int6 in stromal fibroblasts. Results: We searched microarray databases of human tumors to assess Int6's role in breast cancer. While INT6 expression levels, as expected, were lower in breast tumors than in adjacent normal breast tissue samples, INT6 expression levels were also substantially lower in tumor stroma. By immunohistochemistry, we determined that the low levels of INT6 mRNA observed in the microarray databases most likely occurs in stromal fibroblasts, because far fewer fibroblasts in the tumor tissue showed detectable levels of the Int6 protein. To directly investigate the effects of Int6 repression on fibroblasts, we silenced INT6 expression in immortalized human mammary fibroblasts (HMFs). When these INT6-repressed HMFs were co-cultured with breast cancer cells, the abilities of the latter to form colonies in soft agar and to invade were enhanced. We analyzed INT6-repressed HMFs and found an increase in the levels of a key carcinoma-associated fibroblast (CAF) marker, smooth muscle actin. Furthermore, like CAFs, these INT6-repressed HMFs secreted more stromal cell-derived factor 1 (SDF-1), and the addition of an SDF-1 antagonist attenuated the INT6-repressed HMFs' ability to enhance soft agar colony formation when co-cultured with cancer cells. These INT6-repressed HMFs also expressed high levels of mesenchymal markers such as vimentin and N-cadherin. Intriguingly, when mesenchymal stem cells (MSCs) were induced to form CAFs, Int6 levels were reduced. Conclusion: These data suggest that besides enhancing transforming activity in epithelial cells, INT6 repression can also induce fibroblasts, and possibly MSCs as well, via mesenchymal-mesenchymal transitions to promote the formation of CAFs, leading to a proinvasive microenvironment for tumorigenesis
    corecore