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A B S T R A C T

Estrogen receptor (ER) positive tumors represent the majority of breast malignancies, and

are effectively treated with hormonal therapies, such as tamoxifen. However, in the recur-

rent disease resistance to tamoxifen therapy is common and a major cause of death. In

recent years, in-depth proteome analyses have enabled identification of clinically useful
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biomarkers, particularly, when heterogeneity in complex tumor tissue was reduced using

laser capture microdissection (LCM). In the current study, we performed high resolution

proteomic analysis on two cohorts of ER positive breast tumors derived from patients

who either manifested good or poor outcome to tamoxifen treatment upon recurrence. A

total of 112 fresh frozen tumors were collected from multiple medical centers and divided

into two sets: an in-house training and a multi-center test set. Epithelial tumor cells were

enriched with LCM and analyzed by nano-LC Orbitrap mass spectrometry (MS), which

yielded >3000 and >4000 quantified proteins in the training and test sets, respectively.

Raw data are available via ProteomeXchange with identifiers PXD000484 and PXD000485.

Statistical analysis showed differential abundance of 99 proteins, of which a subset of 4

proteins was selected through a multivariate step-down to develop a predictor for tamox-

ifen treatment outcome. The 4-protein signature significantly predicted poor outcome pa-

tients in the test set, independent of predictive histopathological characteristics (hazard

ratio [HR] ¼ 2.17; 95% confidence interval [CI] ¼ 1.15 to 4.17; multivariate Cox regression

p value ¼ 0.017). Immunohistochemical (IHC) staining of PDCD4, one of the signature pro-

teins, on an independent set of formalin-fixed paraffin-embedded tumor tissues provided

and independent technical validation (HR ¼ 0.72; 95% CI ¼ 0.57 to 0.92; multivariate Cox

regression p value ¼ 0.009). We hereby report the first validated protein predictor for

tamoxifen treatment outcome in recurrent ER-positive breast cancer. IHC further showed

that PDCD4 is an independent marker.

ª 2015 The Authors. Published by Elsevier B.V. on behalf of Federation of European

Biochemical Societies. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction amounts due to the fact that only a limited number of cells
ER positive tumors constitute the majority of all breast malig-

nancies. Tamoxifen therapy has been shown to significantly

improve survival and cure of patientswith primary ER positive

breast tumors, but upon recurrence about half of the patients

show intrinsic resistance, while those initially respondingwill

ultimately develop acquired resistance (Cardoso et al., 2012;

Milani, 2014). The need for biomarkers capable of determining

mechanisms of resistance has led to the development of

several predictive signatures, though none has been intro-

duced in the clinic so far (Beelen et al., 2012). With the recent

advancements in MS techniques, in-depth quantification of

the human proteome has become possible and the ability of

measuring protein abundance over a broad dynamic range

has established proteomics as a robust tool for biomarker dis-

covery (Drabovich et al., 2014; Kim et al., 2014; Wilhelm et al.,

2014). The proteomic analysis of tissue specimens is, however,

hindered by their heterogeneity, which alters protein abun-

dance dynamic range. Furthermore, the presence of stromal

and infiltrating cells adds another layer of complexity by

hampering accurate protein quantitation of target epithelial

tumor cells (Kondo, 2014). To address this issue, LCM offers

a robust cell sub-population enrichment technique, allowing

accurate downstream analysis of morphologically heteroge-

neous specimens (Emmert-buck et al., 1996; Vogel et al.,

2007). Genomic and proteomic analyses of LCM derived mate-

rial showed the feasibility of this technique in molecular

profiling studies and pointed out its efficacy in studying dis-

ease associated signaling pathways when compared to whole

tissue analyses (Cheng and Zhang, 2013; Sereni et al., 2015; Xu,

2010; F. Yang et al., 2006). LCM yields sub-microgram protein
can be dissected from each sample. In the light of this,

coupling LCM enrichment to chemical labeling methods

would require extensive sample preparation and workflow

optimization, which would be unsuitable in the analysis of

large sample sets. Label-fee quantification (LFQ) software al-

gorithms have demonstrated to be accurate tools in the quan-

titation of proteins, allowing high yield identification and

reliable quantitation of measured peptides even from minute

amount of analyzed specimens (Cox and Mann, 2008; Megger

et al., 2013). We have optimized a tissue proteomic pipeline for

biomarker discovery coupling LCM cell enrichment to high

resolution LC-MS and LFQ, capable of quantifying more than

3000 proteins from only 4000 dissected epithelial cells

(Braakman et al., 2012; Liu et al., 2012). Using this workflow,

we recently developed and validated a prognostic protein

signature for triple negative breast cancer (Liu et al., 2014).

Despite our workflow has demonstrated to be a robust meth-

odology for the discovery of cancer biomarkers, application of

shotgun proteomics in clinical diagnostics remains problem-

atic due to the extensive and time consuming sample prepara-

tion required. In this perspective, IHC or selected reaction

monitoring/multiple reaction monitoring (SRM/MRM) MS

may be more suitable biomarker verification techniques that

do not require extensivemethod optimization or sample prep-

aration (Whiteaker et al., 2011). Although antibody specificity

and lack of accurate quantitation remain important issues,

IHC still remains a major technique in clinical diagnostics

and significantly requires less amount of optimization time

in comparison to ELISA or even SRM/MRM MS.

In this study we describe the development of a predictive

protein signature for tamoxifen resistance in ER positive

http://creativecommons.org/licenses/by-nc-nd/4.�0/
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Figure 1 e Data analysis flow-chart and development of predictor for tamoxifen treatment outcome. Patients were divided into two independent

cohorts and separately measured by LC-MS. Proteomic data from training and test sets were analyzed separately in MaxQuant. Identified proteins

were filtered for reversed sequences and for Posterior Error Probability score (PEP < 0.05), intensities of commonly expressed proteins were

normalized using ComBat algorithm to minimize batch effects, and filtered for missing data (10 minimum observations for global proteomic

analysis and allowing 30% and 0% missing data in training and test set respectively for predictor generation). Student t test ( p value < 0.05) was

then used to assess differences in protein expression levels between good and poor outcome patients. A multivariate regression model was used to

obtain an optimal list of 4 proteins to be tested as a predictor of tamoxifen treatment outcome: CGN, G3BP2, PDCD4 and OCIAD1. The 4-

protein signature was confirmed in an external test set. Acronyms: EMC [ Erasmus MC, University Medical Center; NKI-AVL[Netherlands

Cancer Institute- Antoni van Leeuwenhoek hospital; RadboudUMC [ Radboud University Medical Center.
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breast cancer by coupling LCM tumor cell enrichment and

high resolution LC-MS in the analysis of independent training

and test patient cohorts.We also provide further validation by

IHC analysis of signature proteins on an independent panel of

paraffin-embedded tissues captured in a tissue micro-array

(TMA).
Table 1 e Patient and tumor characteristics.

Traininga Testa

EMC NKI-AVL RadboudUMC

All patients 56 (100) 41 (100) 15 (100)

Age

� 55 years 15 (27) 12 (29) 1 (7)

> 55 years 41 (73) 29 (71) 14 (93)

Menopausal status

Premenopausal 10 (18) 11 (27) 0 (0)

Postmenopausal 46 (82) 30 (63) 15 (100)

Tumor size

T1 (�2 cm) 12 (21) 20 (49) 5 (33)

T2 (2e5 cm) þ Tx 40 (72) 19 (46) 9 (60)

T3 (>5 cm) þ T4 4 (7) 2 (5) 1 (7)

Tumor differentiationb

Good/Moderate 13 (59) 29 (71) 8 (53)

Poor 33 (23) 12 (29) 4 (27)

Unknown 10 (18) 0 (0) 3 (20)

Disease free interval

� 12 months 24 (43) 4 (10) 5 (33)

> 12 months 32 (57) 37 (90) 10 (67)

PgRc

Negative 9 (16) 17 (41) 11 (73)

Positive 44 (79) 24 (59) 4 (27)

Involved lymph nodes

0 31 (55) 24 (58) 6 (40)

� 1 20 (36) 16 (39) 7 (47)

unknown 5 (9) 1 (3) 2 (13)

Dominant site of relapse

Loco-regional 8 (14) 4 (10) 0 (0)

Bone 26 (46) 12 (29) 6 (40)

Visceral 13 (24) 6 (15) 9 (60)

Bone and other 9 (16) 14 (34) 0 (0)

Unknown 0 (0) 5 (12) 0 (0)

Acronym: PgR: progesterone receptor.

a Data are reported as number (percentage).

b Histopathological characteristics were evaluated by local pathol-

ogists, according to standard clinical practice at time of sample

collection.

c Missing data not reported.
2. Materials and methods

2.1. Sample sets

From an initial selection of 200 tissues collected from patients

that received tamoxifen as first line therapy we excluded tis-

sues with a low percentage of tumor cells (i.e. <40%; n ¼ 88;

Figure 1). A total of 112 ER positive fresh frozen primary breast

cancer tissue samples were then included in our sets: 56 from

Erasmus MC University Medical Center (EMC), Rotterdam

(years of surgery: 1981e1994), 41 from the National Cancer

Institute e Antoni van Leeuwenhoek hospital (NKI-AVL),

Amsterdam (1980e1996), and 15 from Radboud University

Medical Center (RadboudUMC), Nijmegen (1991e1996; Table

1). EMC derived samples constituted the training set, while

NKI-AVL and RadboudUMC provided an independent external

test set. ER positivity in tumor cytosols was assessed by quan-

titative biochemical assays (EMC), reverse-transcriptase

quantitative polymerase chain reaction (RadboudUMC), or

IHC (NKI-AVL). All patients underwent surgery of their pri-

mary tumor (conservative or non-conservative), developed

recurrent disease, and were treated with tamoxifen as first

line therapy. Due to lack of response data for a subset of spec-

imens, treatment outcome was defined based on time to pro-

gression (TTP): disease progression�6months and>6months

after start of first line tamoxifen administration were defined

as poor and good outcome, respectively. The training set

comprised 24 and 32 patients who showed good and poor

outcome upon tamoxifen treatment, respectively. The test

set included tumors of 41 good and 15 poor outcome patients.

The NKI-AVL cohort did not contain stage IV tumors, while

such specimens were found in the EMC and RadboudUMC

sets. In addition, 2 tumor tissues of which clinical followup in-

formation was not available were used as LCM and whole tis-

sue lysate (WTL) controls. For biological replicates, both tumor

tissues were subjected to 4 rounds of LCM. Of one of these, a

WTLwas prepared from one sample and digested in triplicate.

In addition, a total of 447 formalin-fixed and paraffin-

embedded tissues collected from EMC and regional hospitals

were comprised in a tissue micro-array. For further analyses,

we included only ER positive tumors and patients who did not

receive hormonal adjuvant therapy. Patients with a revised

histology that showed no tumor, or patients with a progres-

sion within 3 weeks were excluded as well, leading to a total

of 408 ER positive tissues from patients treated with tamox-

ifen as first-line therapy for recurrent disease (Supplemental

Table 1). Response data were collected according to the stan-

dard International Union Against Cancer criteria (Hayward

and Carbone, 1977). In this set, 11 (2.7%) and 51 (12.5%) pa-

tients respectively showed complete (CR) and partial remis-

sion (PR). Two hundred and five (50.3%) patients showed no
change (NC) of disease, of whom 170 (41.7%) showed NC >6

months (defined as stable disease, SD) while 35 (8.6%) showed

NC �6 months after start of therapy. Progressive disease (PD)

was observed in 141 (34.6%) patients. Clinical benefit was

defined as CR þ PR þ SD patients (n ¼ 232; 57%), while objec-

tive response was defined as CR þ PR only (n ¼ 62; 15%).

This retrospective study used coded primary tumor tissues,

in accordance with the Code of Conduct of the Federation of

Medical Scientific Societies in the Netherlands (http://

www.federa.org/codes-conduct). Reporting Recommenda-

tions for Tumor Marker Prognostic Studies were followed

where possible (Altman et al., 2012).
2.2. Laser capture microdissection

All tissue samples were cut into 8 mm cryo-sections, and

collected on UV-sterilized polyethylene naphthalate (PEN)

coated glass slides (Carl ZeissMicrosystems GmbH, G€ottingen,

Germany) for downstream LCM. In addition, 5 mm sections

http://www.federa.org/codes-conduct
http://www.federa.org/codes-conduct
http://dx.doi.org/10.1016/j.molonc.2015.07.004
http://dx.doi.org/10.1016/j.molonc.2015.07.004
http://dx.doi.org/10.1016/j.molonc.2015.07.004
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were collected on regular glass slides and stained with hema-

toxylin and eosin dyes for histological evaluation. Sections on

PEN slides were dehydrated with 95% ethanol and immedi-

ately stored at �80 �C, until further processing. Prior to LCM,

PEN slides were thawed at room temperature and subse-

quently stained with hematoxylin as follows: distilled water,

hematoxylin, distilled water, 50% ethanol, 70% ethanol, 95%

ethanol, 100% ethanol, 100% ethanol. During dehydration

steps Halt Protease Inhibitor Cocktail (Thermo Fisher Scienti-

fic Inc, Rockford, IL, USA) at a 1:100 v/v concentration was

added in order to prevent proteolytic degradation of proteins.

An area of approximately 500,000 mm2 (w4000 tumor cells) was

collected from each tissue using a photo-activated localiza-

tion microscopy Micro Beam device and gathered in an opa-

que adhesive cap (Carl Zeiss Microsystems GmbH,

G€ottingen, Germany). A volume of 20 ml of 0.1% w/v Rapigest

surfactant (Waters Corporation, Milford, MA, USA) in 50 mM

ammonium bicarbonate solution was used to transfer the

collected LCM samples into LoBind� Eppendorf tubes (Eppen-

dorf AG, Hamburg, Germany). Tissue containing buffer was

immediately frozen after collection and stored at �80 �C.

2.3. Protein digestion

LCM collected material was disrupted in a horn sonifier bath

using an Ultrasonic Disruptor Sonifier II (Bransons Utrasonics,

Danbury, CT, USA) at 70% amplitude. Proteins were denatured

at 95 �C, reducedwith 100mMDTT for 30min at room temper-

ature, and alkylated in the dark with 300 mM iodoacetamide

for 30 min at room temperature. Samples were then digested

for 4 h at 37 �C after addition of MS grade trypsin at a 1:4

enzyme-protein ratio (i.e. 100 ng/ml). Samples were acidified

with TFA, and spun down at 14,000 RPM. Supernatants were

collected and transferred to HPLC vials (SigmaeAldrich Corpo-

ration, St. Louis, MO, USA).

2.4. High resolution MS

Mass spectrometry measurements were performed with a

nano liquid chromatography system (Ultimate 3000, Dionex,

Amsterdam, The Netherlands) coupled online to a linear Ion

Trap e Orbitrap XL� mass spectrometer (Thermo Electron,

Bremen, Germany). Samples were first loaded on a trap col-

umn (PepMap C18, 300 mm ID � 5 mm length, 5 mm particle

size, 100 �A pore size; Dionex), then washed and desalted in

0.1% TFA acidified water. Trap column and analytical column

(PepMap C18, 75 mm ID � 50 cm, 3 mm particle size and 100 �A

pore size; Dionex) were then coupled and peptideswere eluted

in a 3 h binary gradient (flow: 300 nl/min; mobile phase A: 2%

acetonitrile and 0.1% formic acid in H2O; mobile phase B: 80%

acetonitrile and 0.08% formic acid). Gradient was run as fol-

lows: 0%e25% mobile phase B for 2 h, increase to 50% mobile

phase B in 1 h. For ESI, metal-coated nano ESI emitters (New

Objective, Woburn, MA) were used and a spray voltage of

1.6 kV was applied. High-resolution scan was acquired from

400 to 1800 Th and was used for MS detection. Automatic

gain was set at 106 ions and lock mass was set at

445.120025 u protonated with (Si(CH3)2O)6. The 5 most intense

peaks in full scan were selected and fragmented by collision

induced dissociation (CID) applying 35% normalized collision
energy and detected in the ion trap. Ions falling out of the

�5 ppm window or for which precursor intensity fell below

1.5 signal-to-noise ratio during 10 scans were excluded.

2.5. Protein identification and quantification

A total of 112 sampleswere analyzed by LTQ-Orbitrap XL�MS,

together with 4 biological LCM replicates of control samples,

and of which one wasmeasured with a triplicate of its match-

ing WTL. MS spectra of the training and test cohorts were

generated and analyzed separately with a time interval of

two years. Orbitrap.RAW files derived from MS analyses

were imported and analyzed in MaxQuant (version 1.2.2.5)

(Cox and Mann, 2008), using Andromeda peptide search en-

gine (Cox et al., 2011). Analysis of spectrawas performed using

the following options: acetylation of the N-terminus and

oxidation of methionine were selected as variable modifica-

tions, multiplicity was set to 1. FASTA file used for protein

search was UniProt-SwissProt human canonical database

(version 2012-09, human canonical proteome; 20.243 identi-

fiers). Minimal peptide length was set to 7 amino acids, match

between runs and LFQ options were selected and kept as

default. Other options were kept as default (e.g. fixed peptide

modifications: carbamidomethylation; false discovery

rate ¼ 0.01). For further data analysis, “ProteinGroups.txt”

file was imported into Microsoft Excel and protein identifiers

were filtered based on PEP score (cutoff <0.05). Contaminants

and reversed sequences were excluded. LFQ intensities for

each sample were selected and each value was Log10 trans-

formed. Protein intensities from training and test sets were

then normalized using ComBat (Johnson et al., 2007) algorithm

in R free software, allowing 10 minimum observations for

whole dataset analysis. A second protein list was generated

allowing 30% missing data points in the training set and

none in the test set for predictor development. LCM and

WTL control samples were not included in the ComBat

normalization procedure due to the lower amount of identi-

fied and quantified proteins. Coefficients of variations of

Log10 transformed MS data were calculated according to the

following formula (Bland and Altman, 1996):

CV ¼ 10ðStandard deviationÞ � 1

Pearson correlation coefficients between measurements of

LCM and WTL replicates were calculated in Perseus (Max

Planck Institute for Biochemistry, Muenchen, Germany). The

MS proteomic data have been deposited to the ProteomeX-

change Consortium (http://proteomecentral.proteomexchan-

ge.org) via the PRIDE partner repository (Vizca�ıno et al., 2013)

with dataset identifiers PXD000484 and PXD000485.

2.6. Tissue micro-array

TMA was prepared using an ATA 27 (Beecher Instruments,

Sun Prairie,WI, USA). 408 paraffin-embedded primary, ER pos-

itive breast cancer tissues derived from patients treated with

first line tamoxifen upon recurrence were used to prepare

the TMA. Tissue cores of 0.6 mm were taken from each tissue

paraffin block and transferred in triplicate into a TMA recip-

ient block. For each tumor tissue sample, three different areas

of the tumor were taken as biological replicates. TMA slides

http://proteomecentral.proteomexchange.org
http://proteomecentral.proteomexchange.org
http://dx.doi.org/10.1016/j.molonc.2015.07.004
http://dx.doi.org/10.1016/j.molonc.2015.07.004
http://dx.doi.org/10.1016/j.molonc.2015.07.004
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were digitalized and analyzed using Slidepath software (Leica

Microsystems, Solms, Germany).

2.7. Immunohistochemistry

Paraffin-embedded tissues on glass slides were de-

paraffinized at 60 �C, and remnants of paraffin were removed

by sequential washings in xylene (3 � 5 min). Re-hydration

was performed by washings through decreasing concentra-

tions of ethanol following with distilled water as follows:

100% ethanol (1 � 5 min, 2 � 2 min), 70% ethanol

(1 � 2 min), 50% ethanol (1 � 2 min), distilled water

(1 � 2 min). Slides were then incubated at 95 �C for 40 min in

DAKO (Agilent Technologies Inc, Santa Clara, CA, USA) anti-

gen retrieval solution (pH 6) diluted 1:10 in MilliQ water,

cooled down to room temperature and washed with PBS

buffer 3 times for 5 min. Blocking solution consisting of 5%

BSA in PBS was added to the slides and incubated for

30 min. Primary antibodies were diluted in DAKO Antibody

Diluent, added to each slide and incubated for 1 h at room

temperature. Slides were then washed with PBS, and DAKO

Envision� secondary antibody (Goat anti-Mouse-HRP and G

anti-R-HRP, 100 ml per slide) solution was added to each slide

and incubated for 45 min at room temperature. A washing cy-

cle with PBS was performed for 5 min and a 1:15 solution of

DABþ chromogen in antibody diluentwas added, following in-

cubation in the dark for 10 min. Slides were then washed in

tap water for 5 min, stained with hematoxylin/eosin for

1 min each and dehydrated again through sequential wash-

ings in 50%e70%e100% ethanol and xylene of 5 min each.

Cover glasses were mounted with Pertex and slides were left

to dry. TMA slides were stained for Programmed Cell Death

4 (PDCD4) protein (1:200), OCIAD1 (1:800), G3BP2 (1:50), and

CGN (1:25). Anti-PDCD4 mouse monoclonal (id: LS-B2949;

clone K4C1) and anti-OCIAD1 rabbit polyclonal (id: LS-B5046)

antibodies were purchased from Lifespan Technologies (Life-

span technologies Inc, Seattle, WA, USA), anti-G3BP2 rabbit

polyclonal (id: NBP1-82976) antibody was purchased from

Novus Biologicals (Novus Biologicals LLC, 8100 Littleton, CO,

USA), and anti-CGN rabbit polyclonal (HPA027657) antibody

was purchased from Sigma.

2.8. IHC staining analysis

Data from scored tissues were filtered for missing data and

adjuvant endocrine therapy, leading to a final list of 294 tissue

samples. PDCD4 antibody stained tissues were separately

scored for nuclear and cytoplasmic staining intensity (cate-

gories: negative, weak, moderate, strong) and percentage of

stained tumor cells (categories: 0%, 1e10%, 11e20%, 21e30%,

31e40%, 41e50%, 51e60%, 71e80%, 81e90%, 91e100%). CGN,

and OCIAD1 stained tissues were scored based on intensity

parameters only, while G3BP2 scoring included quantity levels

as well. TMAwas scored by two independent researchers, and

the average, consolidated scores of triplicate cores were used

for statistical analysis. Due to the fact that PDCD4 cytoplasmic

and nuclear stainings were co-expressed in the evaluated

TMA cores, these were merged in order to assess total

protein levels. PDCD4 nuclear and cytoplasmic scores were

numerically transformed and merged into a histo-score
(Supplemental Table 2) according to formula:

Histo� score ¼ ðnuclear quantity x nuclear intensityÞ
þ cytoplasmic intensity

Histo-score cutoff (i.e. 30) reflective of weak vs strong pro-

tein expression was used to stratify patient groups: low and

high PDCD4 protein expressing tumors displayed a histo-

score below (<) or above (�) the cutoff (Supplemental Table

3). PDCD4 cytoplasmic quantity was ranging only from 80%

to 90% so it was not included in the histo-score calculation

formula.
2.9. Statistical analysis

Differences in clinical parameters between training and test

sets were evaluated by ManneWhitney U and Pearson c2 tests

(two sided tests). Commonly expressed proteins between the

two LCM sets and proteins quantified in WTL sample repli-

cates were annotated through DAVID (Huang and Lempicki,

2008; Huang et al., 2009) for organelle distribution using Swis-

sprot keyword database. Average abundance levels of these

proteins in all 112 measured samples were used to generate

a waterfall plot of protein abundance distribution.

Protein list used for predictor development was tested for

protein differential abundance between patient groups

through Student’s t-test (two sided, unequal variances

assumed). Hierarchical clustering was performed on all quan-

tified and differentially expressed proteins (t test p

value < 0.05), respectively (complete linkage; distance metric:

correlation-uncentered). Significant proteins in the training

set were submitted along with their fold changes and t test p

values to Ingenuity Pathway Analysis (IPA) network analysis

with the following settings: Data sources: all; Confidence:

high (predicted) and experimentally observed; species: hu-

man. Networkwas plotted using path designer (Ingenuity Sys-

tems, Redwood City, CA, USA).

In order to rule out possible indiscriminative identifiers,

the protein predictor was developed selecting the 38 most sig-

nificant proteins (univariate p value < 0.01) in the training set

and a Cox regression multivariate analysis was performed

with a step-down procedure, which involved iteratively

removing the least significant proteins (multivariate p

value� 0.01) until all remaining proteins in themodel showed

a multivariate p value < 0.01. Each protein score (t value) was

then multiplied by its abundance, and values were then

summed for all proteins to obtain a patient score, which was

then coupled to outcome data. Each patient score was plotted

in a receiver operating characteristic (ROC) curve. Youden in-

dex (max of J ¼ Sensitivityþ Specificity�1) was set as cutoff in

the training set and used to categorize patients in the test set.

Log-rank tests on the survival curves of predicted groups were

performed to assess significance of prediction. Association of

predictor proteins to TTP was assessed through Cox regres-

sion, correcting for patient and tumor characteristics. IHC

stainings were used to test for association with TTP, clinical

benefit and objective response in combination with clinical

parameters by Cox and logistic regression analyses, respec-

tively. Co-variables that were found not significant in univar-

iate regression analyses were excluded from multivariate

http://dx.doi.org/10.1016/j.molonc.2015.07.004
http://dx.doi.org/10.1016/j.molonc.2015.07.004
http://dx.doi.org/10.1016/j.molonc.2015.07.004


M O L E C U L A R O N C O L O G Y 1 0 ( 2 0 1 6 ) 2 4e3 930
models. Cox regression and logistic regression analyses, haz-

ard ratios, odds ratios and confidence intervals were calcu-

lated in Stata (version 13.1; Stata Corp, College Station, TX,

USA).
Figure 2 e Protein abundance levels in 112 ER positive breast cancer

samples. The waterfall plot shows mean protein abundance

distribution of 1.960 commonly expressed proteins. The mean

abundance of each quantified protein was calculated and plotted. The

30 least (blue) and most (red) abundant proteins are boxed in panel

(A) and enlarged in panel (B) and (C), respectively.
3. Results

3.1. Analysis of patient cohorts

One hundred and twelve ER positive primary breast tumor tis-

sues, of which 56 comprised the training set and another 56

the test set, were processed according to our tissue prote-

omics workflow (Braakman et al., 2012; Liu et al., 2012) and

analyzed through high resolution MS.

Analysis of tumor and patient characteristics between the

training and test sets showed that age andmenopausal status

at start of tamoxifen therapy, lymph node status, and tumor

size were not significantly different. The test set contained a

higher proportion of poorly differentiated tumors (Pearson’s

c2 ¼ 21.19, p value < 0.001) compared to the training set.

Furthermore, patients in the test cohort had a median disease

free interval (DFI) of 51.4 months (range: 0e195 months),

which was significantly longer (ManneWhitney U ¼ �3.814,

p value < 0.001) than for patients in the training set (median:

16.4 months, range: 0e90.8 months). This can be attributed

to the lack of stage IV tumors in the NKI-AVL cohort, which

possibly contributed to the difference in DFI and grade be-

tween training and test set.

3.2. MS analysis of ER positive breast cancer

LCM discovery and test samples were analyzed along with 8

LCM replicates from 2 separate control tissues, and 3 technical

replicates of a control WTL. A total of 2215 proteins were

quantified in LCM control samples, and 1320 proteins in the

WTL sample replicates, with only 852 proteins quantified in

both LCM and WTL controls. Pearson correlation coefficients

between LCM samples ranged from 0.92 to 0.97 while it ranged

from 0.96 to 0.97 betweenWTL measurements (Supplemental

Figure 1A). Hierarchical clustering of LCM and WTL controls

showed grouping according to sample origin without miss-

classifications (Supplemental Figure 1B). Median coefficients

of variation of biological and technical replicates were

16.05% (interquartile range, IQR: 10.77e24.56) and 20.35%

(IQR: 11.55e34.28), respectively. Reproducibility of MS mea-

surements was defined as acceptable given the low number

of control samples replicate measurements.

A total of 3227 proteins were identified in the training set,

of which 3109 were quantified by LFQ. In the test set, 4278 pro-

teins were identified and 4061 proteins were quantified. LFQ

intensity values of 2741 proteins commonly expressed be-

tween the training and test set were normalized for batch dif-

ferences and filtered for missing data to generate two protein

lists: a 1960 protein list (10 minimum observations;

Supplemental Table 4) for general proteome analysis and an

845 protein list for predictor development (30% missing data

in training set and 0% missing data in test set; Supplemental

Table 5). From the analysis of 1960 expressed proteins, a

wide distribution of protein abundances was observed over 3
orders of magnitude (Figure 2A). Interferon signaling related

(e.g. IFI16, IFIT5) and chaperone associated proteins (e.g.

DNAJC7, BAG1) displayed low overall abundance (Figure 2B),

while luminal epithelial specific (e.g. KRT18), metabolism

related (e.g. PKM, ATP5A1), and heat-shock (e.g. HSPD1,

HSPB1) proteins were found to be highly abundant

(Figure 2C). In the training set, CV was 14.10% (IQR:

10.22e18.78), whereas it was 13.86% (IQR: 10.33e18.57) in the

test set.

DAVID based annotation for subcellular compartment

showed that in the 112 breast cancer tissues the majority of

expressed proteins belonged to the nuclear (25.76%) and cyto-

plasmic (56.38%) compartments while the endoplasmic retic-

ulum (9.54%), Golgi apparatus (6.43%), mitochondria (12.65%),

plasma membrane (7.50%), and the extracellular matrix

(1.84%) comprised a lower amount of proteins. The smallest

group consisted of plasma proteins (0.46%; Figure 3A). The dis-

tribution of intensity levels of the 1320 proteins quantified in

the WTL control sample showed a similar dynamic range

but with increased variation, probably due to exclusion from

http://dx.doi.org/10.1016/j.molonc.2015.07.004
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Figure 3 e Protein compartmentalization and abundance correlation analysis. Panel shows quantified protein abundance range per subcellular

compartment in the LCM enriched 112 ER positive tumors (A) and in WTL control replicates (B). Number of proteins per compartment and

percentages are displayed above the dot plot.
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the normalization procedure (Figure 3B). Annotation for

cellular compartments showed a similar distribution of the

1320 identified proteins into subcellular compartments

compared to the 112 tissue set but with a notable enrichment

of extracellular matrix (e.g. COL1A1) and plasma proteins (e.g.

APOA1), which represented 7.19% and 6.89% of all quantified

proteins in this set, respectively. The minor contribution of
extracellular matrix and plasma proteins in the LCM samples

suggests that LCM indeed resulted in highly enriched epithe-

lial tumor cell fractions.

Distribution of intensities of organelle specific proteins

showed comparable average levels of expression, therefore

showing that all cell compartments were quantified. In the

LCMannotated set several proteins showedmultiple organelle

http://dx.doi.org/10.1016/j.molonc.2015.07.004
http://dx.doi.org/10.1016/j.molonc.2015.07.004
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Figure 4 e Hierarchical clustering and differential protein abundance

of 4-protein predictor. Samples in the training set (n [ 56) were

hierarchically clustered based on 99 differentially abundant proteins (t

test p value < 0.05). Log10 intensities of differentially abundant

proteins constituting the predictor for tamoxifen treatment outcome

are shown in scatter dot plots. Eight poor and four good outcome

patients were misclassified (A). Three out of four proteins, CGN

(Uniprot accession number: Q9P2M7; p value [ 0.006), OCIAD1

(Uniprot accession number: Q9NX40; p value < 0.001) and PDCD4

(Uniprot accession number: Q53EL6; p value < 0.001), had higher

abundance in patients with good outcome, whereas G3BP2 (Uniprot

accession number Q9UN86; p value < 0.001) was found more highly

expressed in the poor outcome patient group (B).
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localization. The nuclear and cytoplasmic compartments

showed the highest degree of overlap with 249 (12.70%) pro-

teins, mostly represented by proteasome subunits (e.g.

PSME3) and proteins involved in RNA binding (e.g. RBM3,

HNRNPA1). A small number of multi-compartmentalized pro-

teins was constituted by vesicular transport components be-

tween the endoplasmic reticulum and the Golgi apparatus

(n ¼ 39; 1.99%) such as SEC23A. A subset of proteins was

also found co-localized in both Golgi and cytoplasm (e.g.

SEC24D). The remaining compartments showed expression

of locally specific proteins (median overlap: 0.59% of total)

such as oxidative chain proteins in the mitochondrion (e.g.

UQCRC1) or DNA replication and repair involved proteins in

the nucleus (e.g. FEN1). These data indicate the capability of

LC-MS coupled to LCM enrichment to assess protein abun-

dances throughout all cellular compartments from minute

amounts of epithelial tumor tissues.

3.3. Analysis of differentially expressed proteins

Due to the fact that the 1960 proteins did not clearly discrim-

inate patient groups (Supplemental Figure 2), a more stringent

filter for missing values was therefore applied and candidate

proteins were selected based on their differential abundance

between patient groups. On the panel of filtered 845 quantified

proteins, a Student’s t test was performed to identify 99 pro-

teins that were differentially abundant between good and

poor outcome patients in the training set ( p value < 0.05). Of

these, 50 proteins were found upregulated in the poor

outcome group and 49 displayed higher expression in the

good outcome group (Supplemental Table 6). In order to define

molecular interaction networks between significant mole-

cules, network analysis in IPA was performed. The network

that displayed the most hits comprised proteins involved in

cell growth and proliferation and cell death and survival,

such as CDC37 (upregulated in poor outcome) and PDCD4

(upregulated in good outcome; Supplemental Figure 3).

Several molecules included in the network that were found

upregulated in the poor outcome patient group were involved

in integrin-linked kinase signaling (e.g. ITGB1, CFL1), a key

pathway in cell migration and proliferation, protein transla-

tion (e.g. EIF4G1), and DNA mismatch repair (e.g. MSH2). The

proteins found upregulated in the good outcome group and

comprised in this network were involved in cell cycle (e.g.

KRT18) and cell growth (e.g. NOP58). Although not present

among the significant proteins, Akt and MAPK pathways

constituted the focal point of the network, suggesting their

activation based on their interactors expression levels. IPA

analysis showed that differentially expressed proteins were

involved in cell growth and proliferation and suggested that

actors involved in such pathways may have a key role in

tamoxifen resistance.

3.4. Development of a protein signature predictive of
tamoxifen therapy outcome

Based on the 99 differentially abundant proteins, hierarchical

clustering separated the two patient groups (Figure 4A): 20 out

of 28 predicted good outcome patients were correctly classi-

fied as “Good”, while 24 out of 28 predicted poor outcome

http://dx.doi.org/10.1016/j.molonc.2015.07.004
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patients correctly grouped in the “Poor” cluster. After more

stringent filtering ( p value < 0.01) 38 proteins remained,

which were included in a multivariate Cox regression model.

Using a step-down approach, we identified a 4-protein signa-

ture that best predicted outcome to tamoxifen treatment.

The signature comprised the following proteins: programmed

cell death 4 (PDCD4; t test p value< 0.001), Cingulin (CGN; t test

p value ¼ 0.006), ovarian carcinoma immuno-reactive antigen

domain containing protein 1 (OCIAD1; t test p value < 0.001)

and Ras-GTPase activating protein-binding protein 2 (G3BP2;

t test p value< 0.001; Table 2 and Table 3). Based on LFQ inten-

sity levels, OCIAD1, CGN and PDCD4 showed a relatively high

abundance in good outcome patients, while G3BP2 was more

highly abundant in the poor outcome group (Figure 4B).

Next, patient scores of the 4-protein predictor were plotted

in a ROC curve to select a cut-off with the highest sensitivity

and specificity at predicting poor outcome (J ¼ 0.740, area un-

der the curve ¼ 0.93, sensitivity ¼ 90.6%, specificity ¼ 83.3%;

Figure 5A). The 4-protein predictor was then validated in the

test cohort through Cox regression and KaplaneMeier ana-

lyses. In both Cox univariate andmultivariate regression anal-

ysis for TTP, the 4-protein signature was significantly

correlated with outcome of tamoxifen therapy (HR ¼ 2.44;

95% CI ¼ 1.30 to 4.54; p value ¼ 0.006) and multivariate

(HR¼ 2.17; 95%CI¼ 1.15 to 4.17; p value¼ 0.017) regression an-

alyses corrected for traditional predictive factors (Table 4). In

Kaplan Meier analysis, patients with predicted poor outcome

had significantly shorter TTP compared to those with a pre-

dicted good outcome (HR ¼ 2.32; 95% CI ¼ 1.29 to 4.17; Log-

rank p value ¼ 0.004; Figure 5B). In the test set, sensitivity,

specificity, positive predicted value (PPV), and negative pre-

dicted value (NPV) in predicting poor outcome patients were

86.7%, 41.5%, 35.1% and 89.5%, respectively.
Table 2 e LFQ based identification of 4 proteins in discovery and validat

Protein
ID

Gene
name

Molecular
weight (kDa)

Peptides/Unique
peptidesa

Se

Training Test

Q9P2M7 CGN 136.380 22/22 40/40

Q9UN86 G3BP2 54.120 5/5 8/7

Q9NX40 OCIAD1 27.626 8/8 9/9

Q53EL6 PDCD4 51.735 19/19 18/18

a Ratio between peptides and unique peptides associated to each predic

b Peptides/Unique peptides sequence coverage of each protein sequence

c PEP: represents an estimation of a false identification.

Table 3 e Information on the 4 proteins constituting the predictor for ta

Gene name GO cellular component

CGN Cell junction Cingulin

G3BP2 Cytoplasm Ras GTPase-activating prote

OCIAD1 Endosome, Mitochondrion Ovarian carcinoma immun

PDCD4 Cytoplasm, Nucleus Programmed cell death pro
3.5. Immunohistochemical assessment of PDCD4
expression and correlation with TTP

While our tissue proteomics pipeline proved to be successful

in identifying and validating the 4-protein predictor, this tech-

nology is not yet readily available in a clinical setting. There-

fore, we assessed protein expression of PDCD4, G3BP2, CNG,

and OCIAD1 through IHC, a technology that is routinely used

in diagnostic laboratories, in an independent set of formalin-

fixed paraffin-embedded breast cancer tissues incorporated

in a TMA. Normal breast epithelium (i.e. acini and ducts)

and leukocytes displayed expression of all markers except

for CGN,which stained themyoepithelial cell layer only. Blood

vessels displayed expression of all 4 proteins, while overall

low to negative staining was displayed in the stromal

compartment. Examples of comparative IHC analysis of

normal breast tissue, blood vessels, leucocytes and breast car-

cinoma cells are displayed in Supplemental Figure 4AeB.

Strong PDCD4 staining (histo-score � 30) was found to be

significantly associated with longer TTP in univariate

(HR¼ 0.75; 95% CI¼ 0.59 to 0.96; p value¼ 0.020) andmultivar-

iate Cox regression analysis (HR ¼ 0.72; 95% CI ¼ 0.57 to 0.92; p

value ¼ 0.009) corrected for traditional predictive factors

(Table 5). PDCD4 stained tissues showing both low or high pro-

tein expression and the KaplaneMeier curve for TTP as a func-

tion of the PDCD4 histo-score are shown in Figure 6A and

Figure 6B, respectively. In logistic regression analyses for clin-

ical benefit or objective response, PDCD4 levels (histo-

score � 30 vs. < 30) were not significantly associated with

the type of response (data not shown). OCIAD1, CGN and

G3BP2 stainings showed strong intensities and high quantities

of stained tumor cells in the vast majority of specimens. The

limited dynamic range in staining intensities proved
ion sets.

quence coverage/Unique sequence
coverage (%/%)b

PEP scorec

Training Test Training Test

22.8/22.8 39.5/39.5 3.63E-133 7.88E-268

16.4/16.4 22.0/19.5 1.61E-34 5.85E-84

32.2/32.2 32.7/32.7 5.35E-146 2.59E-247

49.3/49.3 47.8/47.8 1.24E-225 3.23E-281

tor protein.

.

moxifen therapy outcome.

Protein name Student t p value

3.13 0.006

in-binding protein 2 3.50 <0.001

ogenic antigen domain-containing protein 1 4.15 <0.001

tein 4 3.99 <0.001
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Figure 5 e ROC curve of the training set and KaplaneMeier curves

for TTP as a function of predicted outcome in patients in the test set.

Patient outcome scores from the training set were calculated based on

abundance levels of the 4 predictor proteins and protein weights (i.e.

Student t value). The ROC curve was generated and Youden

maximum (J [ 0.740) was chosen as the best discriminatory cutoff

(A). Patient scores were subsequently calculated for patients in the

test set, survival curves were generated for the predicted groups and

differences were assessed with the Log-rank test (B). Acronym: AUC:

area under the curve; HR: hazard ratio; CI: confidence interval.
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insufficient to find a significant association of CGN, OCIAD1

and G3BP2 levels with TTP, clinical benefit or objective

response (data not shown).
4. Discussion

About half of the recurrent ER positive breast cancer patients

treated with tamoxifen show intrinsic resistance to the drug.
Despite many studies describing several mechanisms associ-

ated to tamoxifen resistance and a large amount of markers

associated to patient hormonal treatment outcome, there is

no molecular predictor available in the clinic (Chung and

Baxter, 2012; Droog et al., 2013). Furthermore, the search for

biomarkers in the analysis of clinical specimen is often hin-

dered by tissue heterogeneity, which complicates accurate

measurement of tumor protein abundance. In the light of

this, tissue enrichment technologies offer an invaluable tool

to quantify the proteome of specific cell subpopulations.

Though mechanisms of resistance encompass not only a

plethora of molecular mechanisms, but also different cell

types as stromal ones (den Boon et al., 2015; Jung et al.,

2015), analysis of whole tissue specimens would suffer from

“signal dilution” derived from protein differential expression

in heterogeneous tissues. Furthermore, analysis of microdis-

sected stroma is hindered by the presence of high-

abundance proteins (e.g. collagen family) and often needs

additional protein separation methods. In this perspective,

we have focused only on the epithelial tumor markers

involved in tamoxifen resistance. Having successfully coupled

LCM tissue enrichment with high resolution MS in a

biomarker discovery pipeline (Braakman et al., 2012; Liu

et al., 2014, 2012), we have here developed and validated a 4-

protein signature predicting outcome to tamoxifen treatment

in an independent set of ER positive recurrent breast cancer.

Despite the low amount of material derived from tissue

enrichment compared to whole tissue specimens, a higher

number of proteins was identified and quantified in our LCM

samples (training and test sets, and controls) compared to

the WTL control, suggesting interference from highly abun-

dant proteins (e.g. collagen family) in the latter. Furthermore,

from our global proteomic analysis of our combined training

and test sets we showed that plasma and stromal proteins

contamination was minimized in the LCM derived material

while proteins expressed in subcellular compartments were

enriched. This allowed us to take a unique snapshot of protein

abundance of breast cancer epithelial tissue and to derive

markers specifically involved in tumor cell treatment resis-

tance pathways. From a subset of commonly expressed pro-

teins in our 112 ER-positive breast cancer tissues we

developed and validated a protein signature comprising

PDCD4, CGN, OCIAD1 and G3BP2, which was capable of pre-

dicting tamoxifen treatment outcome in the test set with

86.7% sensitivity, 41.4% specificity, 35.1% PPV and 89.5% NPV

and independently from traditional predictive parameters.

The selection of a large cohort of hormonal-treatment naive

patients allowed us to assess tumor protein abundance directly

related to first line tamoxifen treatment without any expres-

sion changes derived from previous therapies. Furthermore,

the availability of an in-house training and a multi-center test

set enabled us to test the robustness of our predictor in a het-

erogeneous set of samples, reflective of differences in patholog-

ical evaluation and standard of care among medical centers.

While our in-house training set showed almost equal distribu-

tion of patient groups, the multi-center cohort comprised a

high number of good outcome patients, which could be

explained by different grading systems used in local hospitals.

To transfer our findingsmore easily to a clinical setting, we also

performed IHC staining on an independent cohort of ER-

http://dx.doi.org/10.1016/j.molonc.2015.07.004
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Table 4 e Univariate and multivariate Cox regression analysis for time to progression.

Factors Hazard
ratio

Univariate
95% CI

p value Hazard
ratio

Multivariate
95% CI

p value

4 protein predictor score

High 1.00 1.00

Low 2.44 1.30e4.54 0.006 2.17 1.15e4.17 0.017

Age

�55 years 1.00 1.00

>55 years 0.44 0.23e0.86 0.017 0.55 0.28e1.08 0.083

Disease free interval

�12 months 1.00

>12 months 0.63 0.30e1.31 0.213

Dominant site of relapse Overall p

Loco-regional 1.00 0.270

Bone 0.89 0.30e2.68

Visceral 0.68 0.22e2.09

Bone and other 0.45 0.14e1.40

PgR

Negative 1.00

Positive 0.57 0.32e1.00 0.052

Acronym: PgR: progesterone receptor.

Table 5 e Univariate and multivariate Cox regression analysis for time to progression.

Factors Hazard
ratio

Univariate
95% CI

p value Hazard
ratio

Multivariate
95% CI

p value

PDCD4

Low 1.00 1.00

High 0.75 0.59e0.96 0.020 0.72 0.57e0.92 0.009

Age

�55 1.00 1.00

>55 0.58 0.45e0.70 <0.001 0.52 0.40e0.67 <0.001

Disease free interval

�12 months 1.00 1.00

>12 months 0.73 0.54e0.99 0.042 0.63 0.46e0.87 0.004

Dominant site of relapse Overall p

Loco-regional 1.00 0.310

Bone 1.39 0.91e2.10

Visceral 1.15 0.73e1.81

Bone and other 1.38 0.89e2.13

PgR

Negative 1.00

Positive 0.77 0.59e1.01 0.062

Acronym: PgR: progesterone receptor.
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positive breast cancer tissues, which confirmed PDCD4 to be an

independent predictivemarker of tamoxifen sensitivity. Never-

theless, the MS based 4-protein signature was a stronger pre-

dictor than the single marker PDCD4, emphasizing the

potential of proteomic technologies in the dissection of tumor

molecular pathways. Still, introduction of high resolution MS

in routine clinical diagnostics remains problematic due to

extensive and laborious sample preparation and relatively

high costs. On the other side, targeted MSmethods offer an ac-

curate tool to detect andquantitate target analytes (i.e. peptides

or metabolites) from biological specimens at a relatively lower

cost, sample processing and measurement times (Grebe and

Singh, 2011; Yassine et al., 2013), and would therefore consti-

tute a more eligible technique for clinical introduction.
Pathways analysis on differentially expressed proteins

showed how cell growth and proliferation pathways are key

components in tamoxifen therapy response and resistance.

Akt and MAPK, although not present among differentially

expressed proteins, constituted the center of the molecular

interaction network, showing how cell cycle progression

through estrogen-independent mechanisms can overcome

tamoxifen treatment. Activation of Akt signaling has been

linked to tamoxifen resistance in previous studies (Clark

et al., 2002; Klinge, 2015; Nass and Kalinski, 2015), but other

molecular mechanisms may be involved. In the light of this,

the 4 protein signature not only is capable of discriminating

patients that manifested good and poor outcome to tamoxifen

treatment, butmay also pinpoint othermolecularmechanisms

http://dx.doi.org/10.1016/j.molonc.2015.07.004
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Figure 6 e PDCD4 immunohistochemical staining of tissue micro-array. Tissue cores showed two different staining patterns that have been

evaluated by histo-score (i.e. Histo-score < 30 and ‡ 30), representing low and high PDCD4 protein expression (A). Patients were categorized

according to histo-score cutoff and TTP was plotted as a KaplaneMeier curve. The Log-rank test was used to test for differences in TTP between

the two survival curves (B). Acronym: HR: hazard ratio; CI: confidence interval.
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of resistance. PDCD4 is an inhibitor of protein translation,

which functions both in the nucleus and the cytoplasm

(Lankat-Buttgereit and G€oke, 2009). This protein has already

been described as a tumor suppressor capable of inhibiting

protein synthesis and gene expression by preventing the inter-

action of eukaryotic initiation factor (eIF) 4A1 and eIF4G, and by

binding to target gene transcripts (e.g. MAP4K) in the nucleus,

respectively (Biyanee et al., 2014; H. Yang et al., 2006). The nu-

clear localization of PDCD4 is attributed to Akt phosphoryla-

tion in a PI3K-dependent manner (Palamarchuk et al., 2005).

PDCD4 levels have also been negatively correlated to increased

expression of miR-21 in MCF-7 cells after tamoxifen treatment

(Klinge et al., 2010; Manavalan et al., 2011). CGN is involved in

tight junction formation and it has been described as a
potential epithelial differentiation marker in human neopla-

sias (Citi et al., 1991; Paschoud et al., 2007). Together with Para-

cingulin, CNG controls the expression of GATA-4, contributing

to down-regulation of RhoA in cells, a key regulator of cell cycle

progression that displays its function through cytoskeletal re-

organization (Guillemot et al., 2013). OCIAD1 expression has

been suggested as a thyroid cancer biomarker and has been

correlated to distant metastasis formation, since it was found

overexpressed in metastatic ovarian cancer by MS analysis

(Sengupta et al., 2008; Yang et al., 2012). Recent studies have

demonstrated that OCIAD1 directly interacts with STAT3 and

aids in its activation, though whether this leads to activation

of the tumor suppressor pathway or the oncogenic one still re-

mains unclear (Lee et al., 2012; Musteanu et al., 2010; Sinha
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et al., 2013). G3BP2 has been shown to be involved in stress

granule formation along with its relative G3BP1, as well as in

mRNA binding and gene expression regulation. G3BP1 protein

has been shown to have a distinct role in breast cancer cell pro-

liferation by stabilizing mRNA molecules, but its homologue

G3BP2was not associated to any of these characteristics, keep-

ing the function of this protein still ambiguous (Kociok et al.,

1999; Matsuki et al., 2013;Winslow et al., 2013).With the excep-

tion of OCIAD1, no studies observed a correlation between

levels of PDCD4, G3BP2, or CGN and patient survival or therapy

response in clinical cancers; nonetheless these markers may

play a role in the type of response to tamoxifen in breast can-

cer. The anti-proliferative effects of PDCD4 and CNGmay have

a synergistic role with the anti-estrogenic action of tamoxifen,

which results in the block of cell proliferation. Due to its rela-

tively high expression in good outcome patients, OCIAD1

may activate the tumor suppressor role of STAT3 in ER positive

breast cancer patients, further inhibiting proliferation. On the

other hand, expression of G3BP2 could actually counteract

tamoxifen action by stabilizing mRNAs of estrogen-

responsive elements aswell as the ones of ER unrelated growth

factors.
5. Conclusions

We hereby demonstrate that LCM coupled to high resolution

LC-MS not only enables the proteomic analysis of pure cell

subpopulations, but it also provides a powerful tool for

biomarker discovery studies. This allowed us to delve into

the breast cancer proteome and to generate and validate a

signature predictive of tamoxifen therapy outcome in recur-

rent ER-positive breast cancer. In addition, a technical vali-

dation through IHC verified that PDCD4 is an independent

marker associated with good outcome patients, although it

is difficult to distinguish small changes in protein expres-

sion by IHC. Despite the fact that shotgun LC-MS coupled

to LCM based cell enrichment has shown to be a robust

tool for biomarker discovery, time-consuming sample

preparation and relatively high costs may hinder its intro-

duction into a clinical setting. In the light of this, targeted

LC-MS methods such as multiple reaction monitoring would

be suited to fill this gap, given the fact that accurate

quantification of target analytes can be performed at lower

costs with reasonable optimization times and in a multi-

plexed fashion.
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