68 research outputs found

    Generation of cytotoxic T cell responses to an HLA-A24 restricted epitope peptide derived from wild-type p53

    Get PDF
    Mutations in the p53 gene are the most common genetic alterations found in human tumours, and these mutations result in high levels of p53 protein in the tumour cells. Since the expression levels of wild-type p53 in nonmalignant tissue are usually much lower in contrast, the p53 protein is an attractive target for cancer immunotherapy. We tested p53 encoded HLA-A24 binding peptides for their capacity to elicit anti-tumour cytotoxic T lymphocytes (CTL) in vitro. These peptides were in murine p53-derived cytotoxic peptides, which were being presented to CTL by H-2K d and H-2K b molecules, because the HLA-A24 peptide binding motifs were similar to the H-2K d and H-2K b. For CTL induction, we used CD8+T lymphocytes from the peripheral blood mononuclear cells (PBMC) of healthy donors and the peptides from pulsed dendritic cells as antigen-presenting cells. We identified the peptide, p53-161 (AIYKQSQHM), which was capable of eliciting CTL lines that lysed tumour cells expressing HLA-A24 and p53. The effectors lysed C1RA24 cells (p53+, HLA-A*2402 transfectant), but not their parental cell lines C1R (p53+, HLA-A,B null cell). These results strongly indicate that the CTL exerts cytotoxic activity in HLA-A24's restricted manner. The identification of this novel p53 epitope for CTL offers the possibility to design and develop specific immunotherapeutic approaches for treating tumours with p53 mutation in HLA-A24-positive patients. © 2001 Cancer Research Campaign http://www.bjcancer.co

    Protection of Macaques with Diverse MHC Genotypes against a Heterologous SIV by Vaccination with a Deglycosylated Live-Attenuated SIV

    Get PDF
    HIV vaccine development has been hampered by issues such as undefined correlates of protection and extensive diversity of HIV. We addressed these issues using a previously established SIV-macaque model in which SIV mutants with deletions of multiple gp120 N-glycans function as potent live attenuated vaccines to induce near-sterile immunity against the parental pathogenic SIVmac239. In this study, we investigated the protective efficacy of these mutants against a highly pathogenic heterologous SIVsmE543-3 delivered intravenously to rhesus macaques with diverse MHC genotypes. All 11 vaccinated macaques contained the acute-phase infection with blood viral loads below the level of detection between 4 and 10 weeks postchallenge (pc), following a transient but marginal peak of viral replication at 2 weeks in only half of the challenged animals. In the chronic phase, seven vaccinees contained viral replication for over 80 weeks pc, while four did not. Neutralizing antibodies against challenge virus were not detected. Although overall levels of SIV specific T cell responses did not correlate with containment of acute and chronic viral replication, a critical role of cellular responses in the containment of viral replication was suggested. Emergence of viruses with altered fitness due to recombination between the vaccine and challenge viruses and increased gp120 glycosylation was linked to the failure to control SIV. These results demonstrate the induction of effective protective immune responses in a significant number of animals against heterologous virus by infection with deglycosylated attenuated SIV mutants in macaques with highly diverse MHC background. These findings suggest that broad HIV cross clade protection is possible, even in hosts with diverse genetic backgrounds. In summary, results of this study indicate that deglycosylated live-attenuated vaccines may provide a platform for the elucidation of correlates of protection needed for a successful HIV vaccine against diverse isolates

    Exposure assessment of process-related contaminants in food by biomarker monitoring

    Get PDF
    Exposure assessment is a fundamental part of the risk assessment paradigm, but can often present a number of challenges and uncertainties. This is especially the case for process contaminants formed during the processing, e.g. heating of food, since they are in part highly reactive and/or volatile, thus making exposure assessment by analysing contents in food unreliable. New approaches are therefore required to accurately assess consumer exposure and thus better inform the risk assessment. Such novel approaches may include the use of biomarkers, physiologically based kinetic (PBK) modelling-facilitated reverse dosimetry, and/or duplicate diet studies. This review focuses on the state of the art with respect to the use of biomarkers of exposure for the process contaminants acrylamide, 3-MCPD esters, glycidyl esters, furan and acrolein. From the overview presented, it becomes clear that the field of assessing human exposure to process-related contaminants in food by biomarker monitoring is promising and strongly developing. The current state of the art as well as the existing data gaps and challenges for the future were defined. They include (1) using PBK modelling and duplicate diet studies to establish, preferably in humans, correlations between external exposure and biomarkers; (2) elucidation of the possible endogenous formation of the process-related contaminants and the resulting biomarker levels; (3) the influence of inter-individual variations and how to include that in the biomarker-based exposure predictions; (4) the correction for confounding factors; (5) the value of the different biomarkers in relation to exposure scenario’s and risk assessment, and (6) the possibilities of novel methodologies. In spite of these challenges it can be concluded that biomarker-based exposure assessment provides a unique opportunity to more accurately assess consumer exposure to process-related contaminants in food and thus to better inform risk assessment

    The role of flavor and fragrance chemicals in TRPA1 (transient receptor potential cation channel, member A1) activity associated with allergies

    Get PDF
    TRPA1 has been proposed to be associated with diverse sensory allergic reactions, including thermal (cold) nociception, hearing and allergic inflammatory conditions. Some naturally occurring compounds are known to activate TRPA1 by forming a Michael addition product with a cysteine residue of TRPA1 through covalent protein modification and, in consequence, to cause allergic reactions. The anti-allergic property of TRPA1 agonists may be due to the activation and subsequent desensitization of TRPA1 expressed in sensory neurons. In this review, naturally occurring TRPA1 antagonists, such as camphor, 1,8-cineole, menthol, borneol, fenchyl alcohol and 2-methylisoborneol, and TRPA1 agonists, including thymol, carvacrol, 1’S-1’- acetoxychavicol acetate, cinnamaldehyde, α-n-hexyl cinnamic aldehyde and thymoquinone as well as isothiocyanates and sulfides are discussed
    • …
    corecore