29 research outputs found

    Modified helix-loop-helix motifs of calmodulin: the influence of the exchange of helical regions on calcium-binding affinity

    Get PDF
    The four calcium-binding sites, called the helix-loop-helix, or the EF-hand motifs, of calmodulin differ in their ion-binding affinities; this has been thought to arise due to the variations in the sequences of the loop regions where the ion binds. We focus attention here on the role of the flanking helical regions on the calcium-binding affinities. Peptides were synthesized in a manner that simulates the E and F helical flanks of site 4 (the strongest calcium-binding site of the calmodulin) to sandwich the loop sequences of sites 1, 2, 3 and 4 so as to produce peptides named 414, 424, 434 and 444, as well as using the helical flanks of site 1 (the weakest site) to produce peptides 111, 121, 131 and 141. Calcium binding was monitored using the calcium-mimic dye Stains-all (4,4,4',5'-dibenzo-3,3'-diethyl-9-methyl-thiacarbocya-nine bromide). Binding abilities were seen to increase several-fold when the E and F helices of site 1 were replaced by those of site 4 (i.e., 111-414). In contrast, the intensity of circular dichroism induced in the absorption bands of the bound achiral dye decreased significantly when the helical flanks of site 4 were replaced with those of site 1 (i.e., 444-141). The helical flanks of site 4 impart greater binding ability to a given loop region, while the helical flanks of site 1 tend to weaken it

    Assessing the suitability of cell counting methods during different stages of a cell processing workflow using an ISO 20391-2 guided study design and analysis

    Get PDF
    Cell counting is a fundamental measurement for determining viable cell numbers in biomanufacturing processes. The properties of different cell types and the range of intended uses for cell counts within a biomanufacturing process can lead to challenges in identifying suitable counting methods for each potential application. This is further amplified by user subjectivity in identifying the cells of interest and further identifying viable cells. Replacement of traditionally used manual counting methods with automated systems has alleviated some of these issues. However, a single cell type can exhibit different physical properties at various stages of cell processing which is further compounded by process impurities such as cell debris or magnetic beads. These factors make it challenging to develop a robust cell counting method that offers a high level of confidence in the results. Several initiatives from standards development organizations have attempted to address this critical need for standardization in cell counting. This study utilizes flow-based and image-based methods for the quantitative measurement of cell concentration and viability in the absence of a reference material, based on the tools and guidance provided by the International of Standards (ISO) and the US National Institute of Standards and Technology (NIST). Primary cells were examined at different stages of cell processing in a cell therapy workflow. Results from this study define a systematic approach that enables the identification of counting methods and parameters that are best suited for specific cell types and workflows to ensure accuracy and consistency. Cell counting is a foundational method used extensively along various steps of cell and gene therapy. The standard used in this study may be applied to other cell and gene therapy processes to enable accurate measurement of parameters required to guide critical decisions throughout the development and production process. Using a framework that confirms the suitability of the cell counting method used can minimize variability in the process and final product

    Stem cell plasticity

    No full text
    The central dogma in stem cell biology has been that cells isolated from a particular tissue can renew and differentiate into lineages of the tissue it resides in. Several studies have challenged this idea by demonstrating that tissue specific cell have considerable plasticity and can cross-lineage restriction boundary and give rise to cell types of other lineages. However, the lack of a clear definition for plasticity has led to confusion with several reports failing to demonstrate that a single cell can indeed differentiate into multiple lineages at significant levels. Further, differences between results obtained in different labs has cast doubt on some results and several studies still await independent confirmation. In this review, we critically evaluate studies that report stem cell plasticity using three rigid criteria to define stem cell plasticity; differentiation of a single cell into multiple cell lineages, functionality of differentiated cells in vitro and in vivo, robust and persistent engraft of transplanted cells.status: publishe

    Gene transfer via nucleofection into adult and embryonic stem cells

    No full text
    The use of embryonic and adult stem cells as therapeutic agents is gaining momentum. A major impediment in the use of stem cells for genetic disorders is their ability to undergo genetic modification. The recognition of various site-specific integration methods open up a new avenue for gene therapy in stem cells. However, this necessitates efficient delivery of DNA molecule into cells. Most commercially used liposome-mediated transfection reagents are toxic or work poorly with stem cells. Electroporation, while effective in transfecting stem cells, is rather harsh and leads to excessive cell death. Nucleofection, a technology by Amaxa, uses a combination of electric pulse in an appropriate media, which decreases the toxicity and promotes efficient transfection of stem cells. Various types of adult and embryonic stem cells can be successfully transfected using this method, as described in this chapter.status: publishe
    corecore