15 research outputs found

    Whole-genome, transcriptome, and methylome analyses provide insights into the evolution of platycoside biosynthesis in Platycodon grandiflorus, a medicinal plant

    Get PDF
    Triterpenoid saponins (TSs) are common plant defense phytochemicals with potential pharmaceutical properties. Platycodon grandiflorus (Campanulaceae) has been traditionally used to treat bronchitis and asthma in East Asia. The oleanane-type TSs, platycosides, are a major component of the P. grandiflorus root extract. Recent studies show that platycosides exhibit anti-inflammatory, antiobesity, anticancer, antiviral, and antiallergy properties. However, the evolutionary history of platycoside biosynthesis genes remains unknown. In this study, we sequenced the genome of P. grandiflorus and investigated the genes involved in platycoside biosynthesis. The draft genome of P. grandiflorus is 680.1Mb long and contains 40,017 protein-coding genes. Genomic analysis revealed that the CYP716 family genes play a major role in platycoside oxidation. The CYP716 gene family of P. grandiflorus was much larger than that of other Asterid species. Orthologous gene annotation also revealed the expansion of beta -amyrin synthases (bASs) in P. grandiflorus, which was confirmed by tissue-specific gene expression. In these expanded gene families, we identified key genes showing preferential expression in roots and association with platycoside biosynthesis. In addition, whole-genome bisulfite sequencing showed that CYP716 and bAS genes are hypomethylated in P. grandiflorus, suggesting that epigenetic modification of these two gene families affects platycoside biosynthesis. Thus whole-genome, transcriptome, and methylome data of P. grandiflorus provide novel insights into the regulation of platycoside biosynthesis by CYP716 and bAS gene families

    Correlations among Soil Properties, Growth Characteristics, and Ginsenoside Contents in Wild-Simulated Ginseng with Different Ages

    No full text
    Wild-simulated ginseng (WSG) is naturally cultivated in forest environment without any artificial facilities or chemicals. Soil property is one of the major factors affecting the growth and active compound synthesis of vegetation. Therefore, growth characteristics and ginsenoside contents of WSG can be affected by soil properties of the cultivation field. Therefore, the aim of this study was to investigate correlations among soil properties, growth characteristics, and ginsenoside contents of WSG with different ages using Spearman’s coefficient analysis method. It was found that most of growth characteristics of WSG except for rhizome length were significantly increased in 7-year-old WSG for both the above-ground part and root part. Soil pH, and exchangeable cations (Ca, Mg) of 13-year-old WSG cultivation site were significantly higher than those of 4-year-old WSG. However, available phosphate of 4-year-old WSG soil was higher than that of 13-year old WSG soil. Contents of ginsenosides of 4-year-old WSG were higher than those of 13-year-old WSG in the above-ground part. Otherwise, in the root part, contents of ginsenosides of 13-year-old WSG were higher than those of 4-year-old WSG. In correlation analysis, growth characteristics of 4-year-old WSG were correlated with more ginsenoside types. Correlations between soil properties and ginsenoside contents in leaves and roots of WSG with the same age also differed. These results suggest that soil properties play essential role in growth and ginsenoside synthesis of WSG. Based on results of this study, growth characteristics, soil properties, and ginsenoside contents of WSG in different WSG cultivation sites need to be further investigated to identify the most suitable cultivation site for WSG

    Correlations among Soil Properties, Growth Characteristics, and Ginsenoside Contents in Wild-Simulated Ginseng with Different Ages

    No full text
    Wild-simulated ginseng (WSG) is naturally cultivated in forest environment without any artificial facilities or chemicals. Soil property is one of the major factors affecting the growth and active compound synthesis of vegetation. Therefore, growth characteristics and ginsenoside contents of WSG can be affected by soil properties of the cultivation field. Therefore, the aim of this study was to investigate correlations among soil properties, growth characteristics, and ginsenoside contents of WSG with different ages using Spearman’s coefficient analysis method. It was found that most of growth characteristics of WSG except for rhizome length were significantly increased in 7-year-old WSG for both the above-ground part and root part. Soil pH, and exchangeable cations (Ca, Mg) of 13-year-old WSG cultivation site were significantly higher than those of 4-year-old WSG. However, available phosphate of 4-year-old WSG soil was higher than that of 13-year old WSG soil. Contents of ginsenosides of 4-year-old WSG were higher than those of 13-year-old WSG in the above-ground part. Otherwise, in the root part, contents of ginsenosides of 13-year-old WSG were higher than those of 4-year-old WSG. In correlation analysis, growth characteristics of 4-year-old WSG were correlated with more ginsenoside types. Correlations between soil properties and ginsenoside contents in leaves and roots of WSG with the same age also differed. These results suggest that soil properties play essential role in growth and ginsenoside synthesis of WSG. Based on results of this study, growth characteristics, soil properties, and ginsenoside contents of WSG in different WSG cultivation sites need to be further investigated to identify the most suitable cultivation site for WSG

    Comparative transcriptome analysis on wild-simulated ginseng of different age revealed possible mechanism of ginsenoside accumulation

    No full text
    Panax ginseng is one of the most famous pharmaceutical plants in Asia. Ginseng plants grown in mountain have longer longevity which ensures higher accumulation of ginsenoside components than those grown in farms. However, wild-simulated ginseng over certain age cannot be easily distinguished in morphology. To identify transcriptomic mechanism of ginsenoside accumulation in older wild-simulated ginseng without large phenotype change, we performed comparative transcriptome analysis for leaf, shoot, and root tissues of 7-yr-old and 13yr-old wild-simulated ginseng. Of 559 differentially expressed genes (DEGs) in comparison between 7-yr-old and 13yr-old wild-simulated ginseng, 280 leaf-, 103 shoot-, and 164 root-mainly expressing genes were found to be changed in transcript level according to age. Functional analysis revealed that pentose-phosphate shunt and abscisic acid responsive genes were up-regulated in leaf tissues of 7-yr-old ginseng while defense responsive genes were up-regulated in root tissues of 13-yr-old ginseng. Quantitative real-time PCR revealed that jasmonic acid responsive genes, ERDL6, and some UGTs were up-regulated in 13-yr-old ginseng in higher order lateral root tissues. These data suggest that bacterial stimulation in mountain region can enhance the expression of several genes which might support minor ginsenoside biosynthesis. © 2023 Elsevier Masson SAS11Nsciescopu

    Correlation between Soil Bacterial Community Structure and Soil Properties in Cultivation Sites of 13-Year-Old Wild-Simulated Ginseng (Panax ginseng C.A. Meyer)

    No full text
    Soil properties are one of the major factors determining the growth of vegetation. These properties drive the selection of the dominant bacterial community profiles, which eventually determines the soil quality and fertility. The abundance of preferential bacterial community assists in better productivity of a particular type of vegetation. The increasing focus on the health and well-being of the human population has resulted in a shift in paradigm to concentrate on the cultivation of medicinal plants such as Wild-simulated ginseng (WSG). These plant species take a long time for their growth and are generally cultivated in the mountainous forest trenches of Far East countries like South Korea. This study was conducted to decipher the bacterial community profiles and their correlation with soil chemical properties, which would give a broader idea about the optimum growing conditions of such an important medicinal plant. The important edaphic factor determined in this study was the soil pH, which was recorded to be acidic in all the studied cultivation sites. In agreement with the edaphic factor, the relative abundance of Acidobacteria was found to be highest as this phylum prefers to grow in acidic soils. Moreover, the total organic matter, total nitrogen and cation exchange capacity were found to be significantly correlated with the bacterial community. Hence, these results will help to identify the suitable cultivation sites for WSG and increase the productivity of these medicinal plants

    Correlation between Soil Bacterial Community Structure and Soil Properties in Cultivation Sites of 13-Year-Old Wild-Simulated Ginseng (<i>Panax ginseng</i> C.A. Meyer)

    No full text
    Soil properties are one of the major factors determining the growth of vegetation. These properties drive the selection of the dominant bacterial community profiles, which eventually determines the soil quality and fertility. The abundance of preferential bacterial community assists in better productivity of a particular type of vegetation. The increasing focus on the health and well-being of the human population has resulted in a shift in paradigm to concentrate on the cultivation of medicinal plants such as Wild-simulated ginseng (WSG). These plant species take a long time for their growth and are generally cultivated in the mountainous forest trenches of Far East countries like South Korea. This study was conducted to decipher the bacterial community profiles and their correlation with soil chemical properties, which would give a broader idea about the optimum growing conditions of such an important medicinal plant. The important edaphic factor determined in this study was the soil pH, which was recorded to be acidic in all the studied cultivation sites. In agreement with the edaphic factor, the relative abundance of Acidobacteria was found to be highest as this phylum prefers to grow in acidic soils. Moreover, the total organic matter, total nitrogen and cation exchange capacity were found to be significantly correlated with the bacterial community. Hence, these results will help to identify the suitable cultivation sites for WSG and increase the productivity of these medicinal plants

    Cytotoxic activity of the twigs of Cinnamomum cassia through the suppression of cell proliferation and the induction of apoptosis in human colorectal cancer cells

    No full text
    Abstract Background Because twigs of Cinnamomum cassia (TC) have been reported to exert anti-cancer activity, the mechanistic study for TC’s anti-cancer activity is required. Thus, we elucidated the potential molecular mechanism of TC’s anti-proliferative effect and the induction of apoptosis in human colorectal cancer cells. Methods How water extracts form TC (TC-HW) was used in this study. Anti-cell proliferative effect of TC-HW was evaluated by MTT assay. The change of protein or mRNA level by TC-HW was evaluated by Western blot and RT-RCR, respectively. The promoter construct for ATF3, NF-κB, TOP-FLASH or FOP-FLASH was used for the investigation of the transcriptional activity for ATF3, NF-κB or Wnt. siRNA for ATF3 or p65 was used for the knockdown of ATF3 and p65. Results TC-HW reduced the cell viability in human colorectal cancer cells. TC-HW decreased cyclin D1 protein level through cyclin D1 degradation via GSK3β-dependent threonine-286 (T286) phosphorylation of cyclin D1, indicating that cyclin D1 degradation may contribute to TC-HW-mediated decrease of cyclin D1 protein level. TC-HW downregulated the expression of cyclin D1 mRNA level and inhibited Wnt activation through the downregulation of β-catenin and TCF4 expression, indicating that inhibition of cyclin D1 transcription may also result in TC-HW-mediated decrease of cyclin D1 protein level. In addition, TC-HW was observed to induce apoptosis through ROS-dependent DNA damage. TC-HW-induced ROS increased NF-κB and ATF3 activation, and inhibition of NF-κB and ATF3 activation attenuated TC-HW-mediated apoptosis. Conclusions Our results suggest that TC-HW may suppress cell proliferation through the downregulation of cyclin D1 via proteasomal degradation and transcriptional inhibition, and may induce apoptosis through ROS-dependent NF-κB and ATF3 activation. These effects of TC-HW may contribute to the reduction of cell viability in human colorectal cancer cells. From these findings, TC-HW has potential to be a candidate for the development of chemoprevention or therapeutic agents for human colorectal cancer

    Anticancer activity of calyx of Diospyros kaki Thunb. through downregulation of cyclin D1 via inducing proteasomal degradation and transcriptional inhibition in human colorectal cancer cells

    No full text
    Abstract Background Although it has been reported to contain high polyphenols, the pharmacological studies of the calyx of Diospyros kaki Thunb (DKC) have not been elucidated in detail. In this study, we elucidated anti-cancer activity and potential molecular mechanism of DKC against human colorectal cancer cells. Methods Anti-cell proliferative effect of 70% ethanol extracts from the calyx of Diospyros kaki (DKC-E70) was evaluated by MTT assay. The effect of DKC-E70 on the expression of cyclin D1 in the protein and mRNA level was evaluated by Western blot and RT-PCR, respectively. Results DKC-E70 suppressed the proliferation of human colorectal cancer cell lines such as HCT116, SW480, LoVo and HT-29. Although DKC-E70 decreased cyclin D1 expression in protein and mRNA level, decreased level of cyclin D1 protein by DKC-E70 occurred at the earlier time than that of cyclin D1 mRNA, which indicates that DKC-E70-mediated downregulation of cyclin D1 protein may be a consequence of the induction of degradation and transcriptional inhibition of cyclin D1. In cyclin D1 degradation, we found that cyclin D1 downregulation by DKC-E70 was attenuated in presence of MG132. In addition, DKC-E70 phosphorylated threonine-286 (T286) of cyclin D1 and T286A abolished cyclin D1 downregulation by DKC-E70. We also observed that DKC-E70-mediated T286 phosphorylation and subsequent cyclin D1 degradation was blocked in presence of the inhibitors of ERK1/2, p38 or GSK3β. In cyclin D1 transcriptional inhibition, DKC-E70 inhibited the expression of β-catenin and TCF4, and β–catenin/TCF-dependent luciferase activity. Conclusions Our results suggest that DKC-E70 may downregulate cyclin D1 as one of the potential anti-cancer targets through cyclin D1 degradation by T286 phosphorylation dependent on ERK1/2, p38 or GSK3β, and cyclin D1 transcriptional inhibition through Wnt signaling. From these findings, DKC-E70 has potential to be a candidate for the development of chemoprevention or therapeutic agents for human colorectal cancer

    Development of Genome-Wide SSR Markers from Angelica gigas Nakai Using Next Generation Sequencing

    No full text
    Angelica gigas Nakai is an important medicinal herb, widely utilized in Asian countries especially in Korea, Japan, and China. Although it is a vital medicinal herb, the lack of sequencing data and efficient molecular markers has limited the application of a genetic approach for horticultural improvements. Simple sequence repeats (SSRs) are universally accepted molecular markers for population structure study. In this study, we found over 130,000 SSRs, ranging from di- to deca-nucleotide motifs, using the genome sequence of Manchu variety (MV) of A. gigas, derived from next generation sequencing (NGS). From the putative SSR regions identified, a total of 16,496 primer sets were successfully designed. Among them, we selected 848 SSR markers that showed polymorphism from in silico analysis and contained tri- to hexa-nucleotide motifs. We tested 36 SSR primer sets for polymorphism in 16 A. gigas accessions. The average polymorphism information content (PIC) was 0.69; the average observed heterozygosity (HO) values, and the expected heterozygosity (HE) values were 0.53 and 0.73, respectively. These newly developed SSR markers would be useful tools for molecular genetics, genotype identification, genetic mapping, molecular breeding, and studying species relationships of the Angelica genus
    corecore