19 research outputs found

    GECKO: a complete large-scale gene expression analysis platform

    Get PDF
    BACKGROUND: Gecko (Gene Expression: Computation and Knowledge Organization) is a complete, high-capacity centralized gene expression analysis system, developed in response to the needs of a distributed user community. RESULTS: Based on a client-server architecture, with a centralized repository of typically many tens of thousands of Affymetrix scans, Gecko includes automatic processing pipelines for uploading data from remote sites, a data base, a computational engine implementing ~ 50 different analysis tools, and a client application. Among available analysis tools are clustering methods, principal component analysis, supervised classification including feature selection and cross-validation, multi-factorial ANOVA, statistical contrast calculations, and various post-processing tools for extracting data at given error rates or significance levels. On account of its open architecture, Gecko also allows for the integration of new algorithms. The Gecko framework is very general: non-Affymetrix and non-gene expression data can be analyzed as well. A unique feature of the Gecko architecture is the concept of the Analysis Tree (actually, a directed acyclic graph), in which all successive results in ongoing analyses are saved. This approach has proven invaluable in allowing a large (~ 100 users) and distributed community to share results, and to repeatedly return over a span of years to older and potentially very complex analyses of gene expression data. CONCLUSIONS: The Gecko system is being made publicly available as free software . In totality or in parts, the Gecko framework should prove useful to users and system developers with a broad range of analysis needs

    Design, Performance, and Calibration of CMS Hadron-Barrel Calorimeter Wedges

    Get PDF
    Extensive measurements have been made with pions, electrons and muons on four production wedges of the Compact Muon Solenoid (CMS) hadron barrel (HB) calorimeter in the H2 beam line at CERN with particle momenta varying from 20 to 300 GeV/c. Data were taken both with and without a prototype electromagnetic lead tungstate crystal calorimeter (EB) in front of the hadron calorimeter. The time structure of the events was measured with the full chain of preproduction front-end electronics running at 34 MHz. Moving-wire radioactive source data were also collected for all scintillator layers in the HB. These measurements set the absolute calibration of the HB prior to first pp collisions to approximately 4%

    Energy Response and Longitudinal Shower Profiles Measured in CMS HCAL and Comparison With Geant4

    Get PDF
    The response of the CMS combined electromagnetic and hadron calorimeter to beams of pions with momenta in the range 5-300 GeV/c has been measured in the H2 test beam at CERN. The raw response with the electromagnetic compartment calibrated to electrons and the hadron compartment calibrated to 300 GeV pions may be represented by sigma = (1.2) sqrt{E} oplus (0.095) E. The fraction of energy visible in the calorimeter ranges from 0.72 at 5 GeV to 0.95 at 300 GeV, indicating a substantial nonlinearity. The intrinsic electron to hadron ratios are fit as a function of energy and found to be in the range 1.3-2.7 for the electromagnetic compartment and 1.4-1.8 for the hadronic compartment. The fits are used to correct the non-linearity of the e pi response to 5% over the entire measured range resulting in a substantially improved resolution at low energy. Longitudinal shower profile have been measured in detail and compared to Geant4 models, LHEP-3.7 and QGSP-2.8. At energies below 30 GeV, the data, LHEP and QGSP are in agreement. Above 30 GeV, LHEP gives a more accurate simulation of the longitudinal shower profile

    Synchronization and Timing in CMS HCAL

    Get PDF
    The synchronization and timing of the hadron calorimeter (HCAL) for the Compact Muon Solenoid has been extensively studied with test beams at CERN during the period 2003-4, including runs with 40 MHz structured beam. The relative phases of the signals from different calorimeter segments are timed to 1 ns accuracy using a laser and equalized using programmable delay settings in the front-end electronics. The beam was used to verify the timing and to map out the entire range of pulse shapes over the 25 ns interval between beam crossings. These data were used to make detailed measurements of energy-dependent time slewing effects and to tune the electronics for optimal performance

    Design, Performance, and Calibration of CMS Hadron Endcap Calorimeters

    Get PDF
    Detailed measurements have been made with the CMS hadron calorimeter endcaps (HE) in response to beams of muons, electrons, and pions. Readout of HE with custom electronics and hybrid photodiodes (HPDs) shows no change of performance compared to readout with commercial electronics and photomultipliers. When combined with lead-tungstenate crystals, an energy resolution of 8\% is achieved with 300 GeV/c pions. A laser calibration system is used to set the timing and monitor operation of the complete electronics chain. Data taken with radioactive sources in comparison with test beam pions provides an absolute initial calibration of HE to approximately 4\% to 5\%

    Design, Performance, and Calibration of the CMS Hadron-Outer Calorimeter

    Get PDF
    The CMS hadron calorimeter is a sampling calorimeter with brass absorber and plastic scintillator tiles with wavelength shifting fibres for carrying the light to the readout device. The barrel hadron calorimeter is complemented with an outer calorimeter to ensure high energy shower containment in the calorimeter. Fabrication, testing and calibration of the outer hadron calorimeter are carried out keeping in mind its importance in the energy measurement of jets in view of linearity and resolution. It will provide a net improvement in missing \et measurements at LHC energies. The outer hadron calorimeter will also be used for the muon trigger in coincidence with other muon chambers in CMS

    Liver Effects of Clinical Drugs Differentiated in Human Liver Slices

    No full text
    Drugs with clinical adverse effects are compared in an ex vivo 3-dimensional multi-cellular human liver slice model. Functional markers of oxidative stress and mitochondrial function, glutathione GSH and ATP levels, were affected by acetaminophen (APAP, 1 mM), diclofenac (DCF, 1 mM) and etomoxir (ETM, 100 μM). Drugs targeting mitochondria more than GSH were dantrolene (DTL, 10 μM) and cyclosporin A (CSA, 10 μM), while GSH was affected more than ATP by methimazole (MMI, 500 μM), terbinafine (TBF, 100 μM), and carbamazepine (CBZ 100 μM). Oxidative stress genes were affected by TBF (18%), CBZ, APAP, and ETM (12%–11%), and mitochondrial genes were altered by CBZ, APAP, MMI, and ETM (8%–6%). Apoptosis genes were affected by DCF (14%), while apoptosis plus necrosis were altered by APAP and ETM (15%). Activation of oxidative stress, mitochondrial energy, heat shock, ER stress, apoptosis, necrosis, DNA damage, immune and inflammation genes ranked CSA (75%), ETM (66%), DCF, TBF, MMI (61%–60%), APAP, CBZ (57%–56%), and DTL (48%). Gene changes in fatty acid metabolism, cholestasis, immune and inflammation were affected by DTL (51%), CBZ and ETM (44%–43%), APAP and DCF (40%–38%), MMI, TBF and CSA (37%–35%). This model advances multiple dosing in a human ex vivo model, plus functional markers and gene profile markers of drug induced human liver side-effects

    Progression of Repair and Injury in Human Liver Slices

    No full text
    Human liver slice function was stressed by daily dosing of acetaminophen (APAP) or diclofenac (DCF) to investigate injury and repair. Initially, untreated human liver and kidney slices were evaluated with the global human U133A array to assess the extended culture conditions. Then, drug induced injury and signals of repair in human liver slices exposed to APAP or DCF (1 mM) were evaluated via specific gene expression arrays. In culture, the untreated human liver and kidney slices remained differentiated and gene expression indicated that repair pathways were activated in both tissues. Morphologically the human liver slices exhibited evidence of repair and regeneration, while kidney slices did not. APAP and DCF exposure caused a direct multi-factorial response. APAP and DCF induced gene expression changes in transporters, oxidative stress and mitochondria energy. DCF caused a greater effect on heat shock and endoplasmic reticulum (ER) stress gene expression. Concerning wound repair, APAP caused a mild repression of gene expression; DCF suppressed the expression of matrix collagen genes, the remodeling metalloproteases, cell adhesion integrins, indicating a greater hinderance to wound repair than APAP. Thus, human liver slices are a relevant model to investigate the mechanisms of drug-induced injury and repair
    corecore