331 research outputs found
Use of the VLBI delay observable for orbit determination of Earth-orbiting VLBI satellites
Very long-baseline interferometry (VLBI) observations using a radio telescope in Earth orbit were performed first in the 1980s. Two spacecraft dedicated to VLBI are scheduled for launch in 1995; the primary scientific goals of these missions will be astrophysical in nature. This article addresses the use of space VLBI delay data for the additional purpose of improving the orbit determination of the Earth-orbiting spacecraft. In an idealized case of quasi-simultaneous observations of three radio sources in orthogonal directions, analytical expressions are found for the instantaneous spacecraft position and its error. The typical position error is at least as large as the distance corresponding to the delay measurement accuracy but can be much greater for some geometries. A number of practical considerations, such as system noise and imperfect calibrations, set bounds on the orbit-determination accuracy realistically achievable using space VLBI delay data. These effects limit the spacecraft position accuracy to at least 35 cm (and probably 3 m or more) for the first generation of dedicated space VLBI experiments. Even a 35-cm orbital accuracy would fail to provide global VLBI astrometry as accurate as ground-only VLBI. Recommended charges in future space VLBI missions are unlikely to make space VLBI competitive with ground-only VLBI in global astrometric measurements
A statistical study of radio-source structure effects on astrometric very long baseline interferometry observations
Errors from a number of sources in astrometric very long baseline interferometry (VLBI) have been reduced in recent years through a variety of methods of calibration and modeling. Such reductions have led to a situation in which the extended structure of the natural radio sources used in VLBI is a significant error source in the effort to improve the accuracy of the radio reference frame. In the past, work has been done on individual radio sources to establish the magnitude of the errors caused by their particular structures. The results of calculations on 26 radio sources are reported in which an effort is made to determine the typical delay and delay-rate errors for a number of sources having different types of structure. It is found that for single observations of the types of radio sources present in astrometric catalogs, group-delay and phase-delay scatter in the 50 to 100 psec range due to source structure can be expected at 8.4 GHz on the intercontinental baselines available in the Deep Space Network (DSN). Delay-rate scatter of approx. 5 x 10(exp -15) sec sec(exp -1) (or approx. 0.002 mm sec (exp -1) is also expected. If such errors mapped directly into source position errors, they would correspond to position uncertainties of approx. 2 to 5 nrad, similar to the best position determinations in the current JPL VLBI catalog. With the advent of wider bandwidth VLBI systems on the large DSN antennas, the system noise will be low enough so that the structure-induced errors will be a significant part of the error budget. Several possibilities for reducing the structure errors are discussed briefly, although it is likely that considerable effort will have to be devoted to the structure problem in order to reduce the typical error by a factor of two or more
Orbit-determination performance of Doppler data for interplanetary cruise trajectories. Part 2: 8.4-GHz performance and data-weighting strategies
A consider error covariance analysis was performed in order to investigate the orbit-determination performance attainable using two-way (coherent) 8.4-GHz (X-band) Doppler data for two segments of the planned Mars Observer trajectory. The analysis includes the effects of the current level of calibration errors in tropospheric delay, ionospheric delay, and station locations, with particular emphasis placed on assessing the performance of several candidate elevation-dependent data-weighting functions. One weighting function was found that yields good performance for a variety of tracking geometries. This weighting function is simple and robust; it reduces the danger of error that might exist if an analyst had to select one of several different weighting functions that are highly sensitive to the exact choice of parameters and to the tracking geometry. Orbit-determination accuracy improvements that may be obtained through the use of calibration data derived from Global Positioning System (GPS) satellites also were investigated, and can be as much as a factor of three in some components of the spacecraft state vector. Assuming that both station-location errors and troposphere calibration errors are reduced simultaneously, the recommended data-weighting function need not be changed when GPS calibrations are incorporated in the orbit-determination process
Phasing the antennas of the Very Large Array (VLA) for reception of telemetry from Voyager 2 at Neptune encounter
The Very Large Array (VLA) radio telescope is being instrumented at 8.4 GHz to receive telemetry from Voyager 2 during its encounter with Neptune in 1989. The procedure in which the 27 antennas have their phases adjusted in near real time so that the signals from the individual elements of the array can be added coherently is examined. Calculations of the expected signal to noise ratio, tests of the autophasing process at the VLA, and off-line simulations of that process are all presented. Various possible procedures for adjusting the phases are considered. It is shown that the signal to noise ratio at the VLA is adequate for summing the signals from the individual antennas with less than 0.1 dB of loss caused by imperfect coherence among the antennas. Tropospheric variations during the summer of 1989 could cause enough loss of coherence to make the losses higher than 0.1 dB. Experiments show that the losses caused by the troposphere can probably be kept below 0.2 dB if the time delay inherent in the phase adjustment process is no longer than approx. 5 secs. This relatively small combining loss meets the goal estabished to minimize the bit error rate in the Voyager telemetry and implies adequate autophasing of the VLA
Orbit-determination performance of Doppler data for interplanetary cruise trajectories. Part 1: Error analysis methodology
An error covariance analysis methodology is used to investigate different weighting schemes for two-way (coherent) Doppler data in the presence of transmission-media and observing-platform calibration errors. The analysis focuses on orbit-determination performance in the interplanetary cruise phase of deep-space missions. Analytical models for the Doppler observable and for transmission-media and observing-platform calibration errors are presented, drawn primarily from previous work. Previously published analytical models were improved upon by the following: (1) considering the effects of errors in the calibration of radio signal propagation through the troposphere and ionosphere as well as station-location errors; (2) modelling the spacecraft state transition matrix using a more accurate piecewise-linear approximation to represent the evolution of the spacecraft trajectory; and (3) incorporating Doppler data weighting functions that are functions of elevation angle, which reduce the sensitivity of the estimated spacecraft trajectory to troposphere and ionosphere calibration errors. The analysis is motivated by the need to develop suitable weighting functions for two-way Doppler data acquired at 8.4 GHz (X-band) and 32 GHz (Ka-band). This weighting is likely to be different from that in the weighting functions currently in use; the current functions were constructed originally for use with 2.3 GHz (S-band) Doppler data, which are affected much more strongly by the ionosphere than are the higher frequency data
Radio Emission from the Intermediate-mass Black Hole in the Globular Cluster G1
We have used the Very Large Array (VLA) to search for radio emission from the
globular cluster G1 (Mayall-II) in M31. G1 has been reported by Gebhardt et al.
to contain an intermediate-mass black hole (IMBH) with a mass of ~2 x 10^4
solar masses. Radio emission was detected within an arcsecond of the cluster
center with an 8.4 GHz power of 2 x 10^{15} W/Hz. The radio/X-ray ratio of G1
is a few hundred times higher than that expected for a high-mass X-ray binary
in the cluster center, but is consistent with the expected value for accretion
onto an IMBH with the reported mass. A pulsar wind nebula is also a possible
candidate for the radio and X-ray emission from G1; future high-sensitivity
VLBI observations might distinguish between this possibility and an IMBH. If
the radio source is an IMBH, and similar accretion and outflow processes occur
for hypothesized ~ 1000-solar-mass black holes in Milky Way globular clusters,
they are within reach of the current VLA and should be detectable easily by the
Expanded VLA when it comes on line in 2010.Comment: ApJ Letters, accepted, 11 pages, 1 figur
The search for reference sources for delta VLBI navigation of the Galileo spacecraft
A comprehensive search was made in order to identify celestial radio sources that can be used as references for navigation of the Galileo spacecraft by means of VLBI observations. The astronomical literature was seached for potential navigation sources, and several VLBI experiments were performed to determine the suitability of those sources for navigation. The results of such work performed since mid-1983 is reported. A summary is presented of the source properties required, the procedures used to identify candidate sources, and the results of the observations of these sources. The lists of souces presented are not meant to be taken directly and used for VLBI navigation, but they do provide a means of identifying the radio sources that could be used at various positions along the Galileo trajectory. Since the reference sources nearest the critical points of Jupiter encounter and probe release are rather weak, it would be extremely beneficial to use a pair of 70-m antennas for the VLBI measurements
A Supernova Factory in the Merger System Arp 299
We have imaged the nearby galaxy merger Arp 299 at arcsecond and
milliarcsecond resolution, using both the Very Large Array and the Very Long
Baseline Array. The large-scale radio emission from the merger contains 5
bright, compact radio sources embedded in diffuse emission, with diameters less
than 200 pc. Supernova rates of 0.1 to 1 per year are required to produce the
VLA-detected radio emission in these sources. Two of the compact VLA radio
sources, designated Source A and Source D, also have been detected and imaged
at milliarcsecond scales. Source A, which is associated with the nucleus of one
of the merging galaxies, contains five milliarcsecond-scale sources, each with
a radio power between 100 and 1000 times that of the Galactic supernova remnant
Cassiopeia A. Four of these have flat or inverted spectra and appear to be
young supernovae. Three of the VLBI-scale sources are located within 10 pc
(projected) of one another, and two are separated by less than 3 pc, indicating
that they all may be within the same super starcluster or complex of such
clusters. The brightest VLBI-scale source, A0, has an extremely inverted
pectrum, with alpha larger than +2 at gigahertz frequencies. It seems to be the
youngest supernova, which has not yet broken out of its circumstellar shell.
The milliarcsecond radio sources within Source A appear to constitute a
upernova factory, confirming the presence of an extreme starburst that peaked
at least a few million years ago.Comment: Accepted for the Astrophysical Journal, 22 pages, 10 figure
A higher density VLBI catalog for navigating Magellan and Galileo
The density of radio sources near the ecliptic in the astrometric JPL Very Long Baseline Interferometry (VLBI) catalog has been increased by over 50 percent since 1985. This density increase has been driven by the need for more sources for the VLBI navigation of the Magellan and Galileo spacecraft, but the sources also will be usable for Mars Observer and other future missions. Since the last catalog, including observations made through 1985, was published in 1988, a total of 21 radio sources has been added that fulfill the following criteria: (1) they lie within 10 deg of the ecliptic plane; (2) their correlated flux densities are above 0.2 Jy on at least one of the Deep Space Network intercontinental baselines at both 2.3 and 8.4 GHz; and (3) the source positions are known to better than 5 milliarcseconds (25 nanoradians). The density of such sources in the catalog has been increased from 15.6 per steradian to 25.2 per steradian. Ten more sources have been added that fulfill the last two criteria given above and lie between 10 deg and 20 deg from the ecliptic plane. Analysis shows that there may be approx. 70 more sources with correlated flux densities above 0.2Jy that are within approx. 20 deg of the ecliptic. However, VLBI navigation observations of the new and prospective sources with the 250-kHz bandwidth of the current operational system will require the use of two 70-m antennas in most cases. Including both old and new sources, if two 34-m antennas are used, there will be usable navigation sources within 10 deg of a spacecraft in only 30 percent of the ecliptic, and sources within 20 deg of a spacecraft over 70 percent of the ecliptic
- …