51 research outputs found

    Goals of the ARISE Space VLBI Mission

    Get PDF
    Supermassive black holes, with masses of 10^6 to more than 10^9 solar masses, are among the most spectacular objects in the Universe, and are laboratories for physics in extreme conditions. The primary goal of ARISE (Advanced Radio Interferometry between Space and Earth) is to use the technique of Space VLBI to increase our understanding of black holes and their environments, by imaging the havoc produced in the near vicinity of the black holes by their enormous gravitational fields. The mission will be based on a 25-meter space-borne radio telescope operating at frequencies between 8 and 86 GHz, roughly equivalent to an orbiting element of the Very Long Baseline Array. In an elliptical orbit with an apogee height of 40,000-100,000 km, ARISE will provide resolution of 15 microarcseconds or better, 5-10 times better than that achievable on the ground. At frequencies of 43 and 86 GHz, the resolution of light weeks to light months in distant quasars will complement the gamma-ray and X-ray observations of high-energy photons, which come from the same regions near the massive black holes. At 22 GHz, ARISE will image the water maser disks in active galaxies more than 15 Mpc from Earth, probing accretion physics and giving accurate measurements of black-hole masses. ARISE also will study gravitational lenses at resolutions of tens of microarcseconds, yielding important information on the dark-matter distribution and on the possible existence of compact objects with masses of 10^3 to 10^6 solar masses.Comment: 6 pages, New Astronomy Reviews, Proceedings of 4th EVN/JIVE Symposium, LaTeX, document class elsart.cls, bibliography style natbib.st

    International mission planning for space Very Long Baseline Interferometry

    Get PDF
    Two spacecraft dedicated to Very Long Baseline Interferometry (VLBI) will be launched in 1996 and 1997 to make observations using baselines between the space telescopes and many of the world's ground radio telescopes. The Japanese Institute of Space and Astronautical Science (ISAS) will launch VSOP (VLBI Space Observatory Program) in September 1996, while the Russian Astro Space Center (ASC) is scheduled to launch RadioAstron in 1997. Both spacecraft will observe radio sources at frequencies near 1.7, 4.8, and 22 GHz; RadioAstron will also observe at 0.33 GHz. The baselines between space and ground telescopes will provide 3-10 times the resolution available for ground VLBI at the same observing frequencies. Ground tracking stations on four continents will supply the required precise frequency reference to each spacecraft measure the two-way residual phase and Doppler on the ground-space link, and record 128 Megabit/s of VLBI data downlinked from the spacecraft. The spacecraft data are meaningless without cross-correlation against the data from Earth-bound telescopes, which must take place at special-purpose VLBI correlation facilities. Therefore, participation by most of the world's radio observatories is needed to achieve substantial science return from VSOP and RadioAstron. The collaboration of several major space agencies and the ground observatories, which generally follow very different models for allocation of observing time and for routine operations, leads to great complexity in mission planning and in day-to-day operations. This paper describes some of those complications and the strategies being developed to assure productive scientific missions

    Radio Emission from the Intermediate-mass Black Hole in the Globular Cluster G1

    Full text link
    We have used the Very Large Array (VLA) to search for radio emission from the globular cluster G1 (Mayall-II) in M31. G1 has been reported by Gebhardt et al. to contain an intermediate-mass black hole (IMBH) with a mass of ~2 x 10^4 solar masses. Radio emission was detected within an arcsecond of the cluster center with an 8.4 GHz power of 2 x 10^{15} W/Hz. The radio/X-ray ratio of G1 is a few hundred times higher than that expected for a high-mass X-ray binary in the cluster center, but is consistent with the expected value for accretion onto an IMBH with the reported mass. A pulsar wind nebula is also a possible candidate for the radio and X-ray emission from G1; future high-sensitivity VLBI observations might distinguish between this possibility and an IMBH. If the radio source is an IMBH, and similar accretion and outflow processes occur for hypothesized ~ 1000-solar-mass black holes in Milky Way globular clusters, they are within reach of the current VLA and should be detectable easily by the Expanded VLA when it comes on line in 2010.Comment: ApJ Letters, accepted, 11 pages, 1 figur

    The Origin of Radio Emission in Low-Luminosity Active Galactic Nuclei: Jets, Accretion Flows, or Both?

    Get PDF
    The low-luminosity active galactic nuclei in NGC 3147, NGC 4203, and NGC 4579 have been imaged at four frequencies with the Very Long Baseline Array. The galaxies are unresolved at all frequencies, with size upper limits of 103−10410^3-10^4 times the Schwarzschild radii of their central massive black holes. The spectral indices between 1.7 and 5.0 GHz range from 0.2 to 0.4; one and possibly two of the galaxies show spectral turnovers between 5.0 and 8.4 GHz. The high brightness temperatures (>109> 10^9 K) and relatively straight spectra imply that free-free emission and/or absorption cannot account for the slightly inverted spectra. Although the radio properties of the cores superficially resemble predictions for advection-dominated accretion flows, the radio luminosities are too high compared to the X-ray luminosities. We suggest that the bulk of the radio emission is generated by a compact radio jet, which may coexist with a low radiative efficiency accretion flow.Comment: To appear in ApJ (Letters). 4 page

    Blazar Counterparts for 3EG Sources at -40 < decl. < 0: Pushing South Through the Bulge

    Full text link
    Supplementing existing survey data with VLA observations, we have extended γ−\gamma-ray counterpart identifications down to decl. = -40∘^\circ using our Figure of Merit approach. We find blazar counterparts for ∌\sim 70% of EGRET sources above decl. = -40∘^\circ away from the Galaxy. Spectroscopic confirmation is in progress, and spectra for ∌\sim two dozen sources are presented here. We find evidence that increased exposure in the bulge region allowed EGRET to detect relatively faint blazars; a clear excess of non-blazar objects in this region however argues for an additional (new) source class.Comment: ApJ accepte

    Cicrumnuclear Supernova Remnants and HII Regions in NGC 253

    Full text link
    Archival VLA data has been used to produce arcsecond-resolution 6- and 20-cm images of the region surrounding the nuclear 200-pc (~15") starburst in NGC 253. Twenty-two discrete sources stronger than 0.4 mJy have been detected within ~2 kpc (~3') of the galaxy nucleus; almost all these sources must be associated with the galaxy. None of the radio sources coincides with a detected X-ray binary, so they appear to be due to supernova remnants and H II regions. The region outside the central starburst has a derived radio supernova rate of <~0.1/yr, and may account for at least 20% of the recent star formation in NGC 253. Most of the newly identified sources have steep, nonthermal radio spectra, but several relatively strong thermal sources also exist, containing the equivalent of tens of O5 stars. These stars are spread over tens of parsecs, and are embedded in regions having average ionized gas densities of 20-200/cm^3, much lower than in the most active nuclear star-forming regions in NGC 253 or in the super star clusters seen in other galaxies. The strongest region of thermal emission coincides with a highly reddened area seen at near-infrared wavelengths, possibly containing optically obscured H II regions.Comment: 17 pages, 3 postscript figures, AASTeX format, in press for Astronomical Journal, July 200
    • 

    corecore