17,678 research outputs found
Interpretation of Solar Magnetic Field Strength Observations
This study based on longitudinal Zeeman effect magnetograms and spectral line
scans investigates the dependence of solar surface magnetic fields on the
spectral line used and the way the line is sampled in order to estimate the
magnetic flux emerging above the solar atmosphere and penetrating to the corona
from magnetograms of the Mt. Wilson 150-foot tower synoptic program (MWO). We
have compared the synoptic program \lambda5250\AA line of Fe I to the line of
Fe I at \lambda5233\AA since this latter line has a broad shape with a profile
that is nearly linear over a large portion of its wings. The present study uses
five pairs of sampling points on the \AA line. We recommend
adoption of the field determined with a line bisector method with a sampling
point as close as possible to the line core as the best estimate of the
emergent photospheric flux. The combination of the line profile measurements
and the cross-correlation of fields measured simultaneously with \lambda5250\AA
and \lambda5233\AA yields a formula for the scale factor 1/\delta that
multiplies the MWO synoptic magnetic fields. The new calibration shows that
magnetic fields measured by the MDI system on the SOHO spacecraft are equal to
0.619+/-0.018 times the true value at a center-to-limb position 30 deg. Berger
and Lites (2003) found this factor to be 0.64+/-0.013 based on a comparison the
the Advanced Stokes Polarimeter.Comment: Accepted by Solar Physic
Binary black-hole evolutions of excision and puncture data
We present a new numerical code developed for the evolution of binary
black-hole spacetimes using different initial data and evolution techniques.
The code is demonstrated to produce state-of-the-art simulations of orbiting
and inspiralling black-hole binaries with convergent waveforms. We also present
the first detailed study of the dependence of gravitational waveforms resulting
from three-dimensional evolutions of different types of initial data. For this
purpose we compare the waveforms generated by head-on collisions of superposed
Kerr-Schild, Misner and Brill-Lindquist data over a wide range of initial
separations.Comment: 21 pages, 13 figures, final version accepted for publication in PR
Preliminary catalog of pictures taken on the lunar surface during the Apollo 15 mission
Catalog of all pictures taken from lunar module or lunar surface during Apollo 15 missio
Cyclic mutually unbiased bases, Fibonacci polynomials and Wiedemann's conjecture
We relate the construction of a complete set of cyclic mutually unbiased
bases, i. e., mutually unbiased bases generated by a single unitary operator,
in power-of-two dimensions to the problem of finding a symmetric matrix over
F_2 with an irreducible characteristic polynomial that has a given Fibonacci
index. For dimensions of the form 2^(2^k) we present a solution that shows an
analogy to an open conjecture of Wiedemann in finite field theory. Finally, we
discuss the equivalence of mutually unbiased bases.Comment: 11 pages, added chapter on equivalenc
The Offline Software Framework of the Pierre Auger Observatory
The Pierre Auger Observatory is designed to unveil the nature and the origins
of the highest energy cosmic rays. The large and geographically dispersed
collaboration of physicists and the wide-ranging collection of simulation and
reconstruction tasks pose some special challenges for the offline analysis
software. We have designed and implemented a general purpose framework which
allows collaborators to contribute algorithms and sequencing instructions to
build up the variety of applications they require. The framework includes
machinery to manage these user codes, to organize the abundance of
user-contributed configuration files, to facilitate multi-format file handling,
and to provide access to event and time-dependent detector information which
can reside in various data sources. A number of utilities are also provided,
including a novel geometry package which allows manipulation of abstract
geometrical objects independent of coordinate system choice. The framework is
implemented in C++, and takes advantage of object oriented design and common
open source tools, while keeping the user side simple enough for C++ novices to
learn in a reasonable time. The distribution system incorporates unit and
acceptance testing in order to support rapid development of both the core
framework and contributed user code.Comment: 4 pages, 2 figures, presented at IEEE NSS/MIC, 23-29 October 2005,
Puerto Ric
The five-minute oscillations: What's left to be done
Current observational methods for studying these oscillations at large horizontal wavenumbers are discussed in detail and several two dimensional power spectra obtained with a CID camera on the main spectrograph of the McMath telescope at Kitt Peak National Observatory are described. The best-resolved observations of the p-mode obtained at chromospheric elevations are also presented. Recent progress in studies of the p-modes at low wavenumbers with full-disk velocity detection schemes is summarized. These full-disk observations of radial and low-degree non-radial modes were shown to place severe constraints on the theoretical calculation of solar interior structure. Progress in making fully-consistent solar models which fit both the high- and low-wave number observations is described. Finally, the observational and theoretical improvements that are necessary for further progress in solar seismology are summarized
Indistinguishable photons from the resonance fluorescence of a single quantum dot in a microcavity
We demonstrate purely resonant continuous-wave optical laser excitation to
coherently prepare an excitonic state of a single semiconductor quantum dot
(QDs) inside a high quality pillar microcavity. As a direct proof of QD
resonance fluorescence, the evolution from a single emission line to the
characteristic Mollow triplet10 is observed under increasing pump power. By
controlled utilization of weak coupling between the emitter and the fundamental
cavity mode through Purcell-enhancement of the radiative decay, a strong
suppression of pure dephasing is achieved, which reflects in close to Fourier
transform-limited and highly indistinguishable photons with a visibility
contrast of 90%. Our experiments reveal the model-like character of the coupled
QD-microcavity system as a promising source for the generation of ideal photons
at the quantum limit. From a technological perspective, the vertical cavity
symmetry -- with optional dynamic tunability -- provides strongly directed
light emission which appears very desirable for future integrated emitter
devices.Comment: 24 pages, 6 figure
High-resolution surface plasmon imaging of gold nanoparticles by energy-filtered transmission electron microscopy
We demonstrate the imaging capabilities of energy-filtered transmission electron microscopy at high-energy resolution in the low-energy-loss region, reporting the direct image of a surface plasmon of an elongated gold nanoparticle at energies around 1 eV. Using complimentary model calculations performed within the boundary element method approach we can assign the observed results to the plasmon eigenmodes of the metallic nanoparticle
- …