215 research outputs found

    Intravital Microscopy Visualizing Immunity in Context

    Get PDF
    AbstractRecent advances in photonics, particularly multi-photon microscopy (MPM) and new molecular and genetic tools are empowering immunologists to answer longstanding unresolved questions in living animals. Using intravital microscopy (IVM) investigators are dissecting the cellular and molecular underpinnings controlling immune cell motility and interactions in tissues. Recent IVM work showed that T cell responses to antigen in lymph nodes are different from those observed in vitro and appear dictated by factors uniquely relevant to intact organs. Other IVM models, particularly in the bone marrow, reveal how different anatomic contexts regulate leukocyte development, immunity, and inflammation. This article will discuss the current state of the field and outline how IVM can generate new discoveries and serve as a “reality check” for areas of research that were formerly the exclusive domain of in vitro experimentation

    Molecular Mechanisms of Lymphocyte Homing to Peripheral Lymph Nodes

    Get PDF
    To characterize the adhesion cascade that directs lymphocyte homing to peripheral lymph nodes (PLNs), we investigated the molecular mechanisms of lymphocyte interactions with the microvasculature of subiliac lymph nodes. We found that endogenous white blood cells and adoptively transferred lymph node lymphocytes (LNCs) tethered and rolled in postcapillary high endothelial venules (HEVs) and to a lesser extent in collecting venules. Similarly, firm arrest occurred nearly exclusively in the paracortical HEVs. Endogenous polymorphonuclear (PMNs) and mononuclear leukocytes (MNLs) attached and rolled in HEVs at similar frequencies, but only MNLs arrested suggesting that the events downstream of primary rolling interactions critically determine the specificity of lymphocyte recruitment. Antibody inhibition studies revealed that L-selectin was responsible for attachment and rolling of LNCs, and that LFA-1 was essential for sticking. LFA-1–dependent arrest was also abolished by pertussis toxin, implicating a requirement for Gαi−-protein–linked signaling. α4 integrins, which play a critical role in lymphocyte homing to Peyer's Patches, made no significant contribution to attachment, rolling, or sticking in resting PLNs. Velocity analysis of interacting LNCs revealed no detectable contribution by LFA-1 to rolling. Taken together, our results suggest that lymphocyte– HEV interactions within PLNs are almost exclusively initiated by L-selectin followed by a G protein–coupled lymphocyte-specific activation event and activation-induced engagement of LFA-1. These events constitute a unique adhesion cascade that dictates the specificity of lymphocyte homing to PLNs

    CCR7 ligands stimulate the intranodal motility of T lymphocytes in vivo

    Get PDF
    In contrast to lymphocyte homing, little is known about molecular cues controlling the motility of lymphocytes within lymphoid organs. Applying intravital two-photon microscopy, we demonstrate that chemokine receptor CCR7 signaling enhances the intranodal motility of CD4+ T cells. Compared to wild-type (WT) cells, the average velocity and mean motility coefficient of adoptively transferred CCR7-deficient CD4+ T lymphocytes in T cell areas of WT recipients were reduced by 33 and 55%, respectively. Both parameters were comparably reduced for WT T lymphocytes migrating in T cell areas of plt/plt mice lacking CCR7 ligands. Importantly, systemic application of the CCR7 ligand CCL21 was sufficient to rescue the motility of WT T lymphocytes inside T cell areas of plt/plt recipients. Comparing the movement behavior of T cells in subcapsular areas that are devoid of detectable amounts of CCR7 ligands even in WT mice, we failed to reveal any differences between WT and plt/plt recipients. Furthermore, in both WT and plt/plt recipients, highly motile T cells rapidly accumulated in the subcapsular region after subcutaneous injection of the CCR7 ligand CCL19. Collectively, these data identify CCR7 and its ligands as important chemokinetic factors stimulating the basal motility of CD4+ T cells inside lymph nodes in vivo

    A central role for microvillous receptor presentation in leukocyte adhesion under flow

    Get PDF
    AbstractLeukocyte adhesion to endothelium requires specialized mechanisms for contact initiation under flow. L-selectin (CD62L), an efficient initiator of adhesion, is clustered on the tips of leukocyte microvilli. To test whether microvillous presentation is critical for contact formation (“tethering”), we transfected lymphoid cells with chimeras of L-selectin and CD44, an adhesion molecule that is excluded from microvilli. CD44 transmembrane and intracellular (TM-IC) domains targeted the L-selectin ectodomain to the planar body, whereas L-selectin TM-IC segments conferred CD44 ectodomain clustering on microvilli. Wild-type and chimeric transfectants bound similarly to anti-ectodomain MAbs in static assays, but MAb binding under flow was much more efficient in the context of microvillous presentation. Similarly, wild-type and chimeric L-selectin possessed equivalent lectin activity, but microvillous presentation dramatically enhanced contact initiation on a native ligand. These findings demonstrate a critical role for receptor topography in leukocyte adhesion and suggest a novel regulatory mechanism of leukocyte trafficking

    Reciprocal and dynamic control of CD8 T cell homing by dendritic cells from skin- and gut-associated lymphoid tissues

    Get PDF
    T cell activation by intestinal dendritic cells (DC) induces gut-tropism. We show that, reciprocally, DC from peripheral lymph nodes (PLN-DC) induce homing receptors promoting CD8 T cell accumulation in inflamed skin, particularly ligands for P- and E-selectin. Differential imprinting of tissue-tropism was independent of Th1/Th2 cytokines and not restricted to particular DC subsets. Fixed PLN-DC retained the capacity to induce selectin ligands on T cells, which was suppressed by addition of live intestinal DC. By contrast, fixed intestinal DC failed to promote gut-tropism and instead induced skin-homing receptors. Moreover, the induction of selectin ligands driven by antigen-pulsed PLN-DC could be suppressed “in trans” by adding live intestinal DC, but PLN-DC did not suppress gut-homing receptors induced by intestinal DC. Reactivation of tissue-committed memory cells modified their tissue-tropism according to the last activating DC's origin. Thus, CD8 T cells activated by DC acquire selectin ligands by default unless they encounter fixation-sensitive signal(s) for gut-tropism from intestinal DC. Memory T cells remain responsive to these signals, allowing for dynamic migratory reprogramming by skin- and gut-associated DC

    CD4 Effector T Cell Subsets in the Response to Influenza: Heterogeneity, Migration, and Function

    Get PDF
    The immune response of naive CD4 T cells to influenza virus is initiated in the draining lymph nodes and spleen, and only after effectors are generated do antigen-specific cells migrate to the lung which is the site of infection. The effector cells generated in secondary organs appear as multiple subsets which are a heterogeneous continuum of cells in terms of number of cell divisions, phenotype and function. The effector cells that migrate to the lung constitute the more differentiated of the total responding population, characterized by many cell divisions, loss of CD62L, down-regulation of CCR7, stable expression of CD44 and CD49d, and transient expression of CCR5 and CD25. These cells also secrete high levels of interferon γ and reduced levels of interleukin 2 relative to those in the secondary lymphoid organs. The response declines rapidly in parallel with viral clearance, but a spectrum of resting cell subsets reflecting the pattern at the peak of response is retained, suggesting that heterogeneous effector populations may give rise to corresponding memory populations. These results reveal a complex response, not an all-or-none one, which results in multiple effector phenotypes and implies that effector cells and the memory cells derived from them can display a broad spectrum of functional potentials
    corecore