25 research outputs found

    Modelling the climatic niche of turtles: a deep-time perspective

    No full text
    Ectotherms have close physiological ties with the thermal environment; consequently, the impact of future climate change on their biogeographic distributions is of major interest. Here, we use the modern and deep-time fossil record of testudines (turtles, tortoises, and terrapins) to provide the first test of climate on the niche limits of both extant and extinct (Late Cretaceous, Maastrichtian) taxa. Ecological niche models are used to assess niche overlap in model projections for key testudine ecotypes and families. An ordination framework is applied to quantify metrics of niche change (stability, expansion, and unfilling) between the Maastrichtian and present day. Results indicate that niche stability over evolutionary timescales varies between testudine clades. Groups that originated in the Early Cretaceous show climatic niche stability, whereas those diversifying towards the end of the Cretaceous display larger niche expansion towards the modern. Temperature is the dominant driver of modern and past distributions, whereas precipitation is important for freshwater turtle ranges. Our findings demonstrate that testudines were able to occupy warmer climates than present day in the geological record. However, the projected rate and magnitude of future environmental change, in concert with other conservation threats, presents challenges for acclimation or adaptation

    Neuroanatomy in mouse models of Rett syndrome is related to the severity of Mecp2 mutation and behavioral phenotypes

    No full text
    Abstract Background Rett syndrome (RTT) is a neurodevelopmental disorder that predominantly affects girls. The majority of RTT cases are caused by de novo mutations in methyl-CpG-binding protein 2 (MECP2), and several mouse models have been created to further understand the disorder. In the current literature, many studies have focused their analyses on the behavioral abnormalities and cellular and molecular impairments that arise from Mecp2 mutations. However, limited efforts have been placed on understanding how Mecp2 mutations disrupt the neuroanatomy and networks of the brain. Methods In this study, we examined the neuroanatomy of male and female mice from the Mecp2tm1Hzo, Mecp2tm1.1Bird/J, and Mecp2tm2Bird/J mouse lines using high-resolution magnetic resonance imaging (MRI) paired with deformation-based morphometry to determine the brain regions susceptible to Mecp2 disruptions. Results We found that many cortical and subcortical regions were reduced in volume within the brains of mutant mice regardless of mutation type, highlighting regions that are susceptible to Mecp2 disruptions. We also found that the volume within these regions correlated with behavioral metrics. Conversely, regions of the cerebellum were differentially affected by the type of mutation, showing an increase in volume in the mutant Mecp2tm1Hzo brain relative to controls and a decrease in the Mecp2tm1.1Bird/J and Mecp2tm2Bird/J lines. Conclusions Our findings demonstrate that the direction and magnitude of the neuroanatomical differences between control and mutant mice carrying Mecp2 mutations are driven by the severity of the mutation and the stage of behavioral impairments
    corecore