22 research outputs found

    Long-term outcome of chronic dialysis in children

    Get PDF
    As the prevalence of children on renal replacement therapy (RRT) increases world wide and such therapy comprises at least 2% of any national dialysis or transplant programme, it is essential that paediatric nephrologists are able to advise families on the possible outcome for their child on dialysis. Most children start dialysis with the expectation that successful renal transplantation is an achievable goal and will provide the best survival and quality of life. However, some will require long-term dialysis or may return intermittently to dialysis during the course of their chronic kidney disease (CKD). This article reviews the available outcome data for children on chronic dialysis as well as extrapolating data from the larger adult dialysis experience to inform our paediatric practice. The multiple factors that may influence outcome, and, particularly, those that can potentially be modified, are discussed

    Cortical Evolution: Introduction to the Reptilian Cortex

    Get PDF
    Some 320 million years ago (MYA), the evolution of a protective membrane surrounding the embryo, the amnion, enabled vertebrates to develop outside water and thus invade new terrestrial niches. These amniotes were the ancestors of today's mammals and sauropsids (reptiles and birds). Present-day reptiles are a diverse group of more than 10,000 species that comprise the sphenodon, lizards, snakes, turtles and crocodilians. Although turtles were once thought to be the most "primitive" among the reptiles, current genomic data point toward two major groupings: the Squamata (lizards and snakes) and a group comprising both the turtles and the Archosauria (dinosaurs and modern birds and crocodiles). Dinosaurs inhabited the Earth from the Triassic (230 MYA), at a time when the entire landmass formed a single Pangaea. Dinosaurs flourished from the beginning of the Jurassic to the mass extinction at the end of the Cretaceous (65 MYA), and birds are their only survivors. What people generally call reptiles is thus a group defined in part by exclusion: it gathers amniote species that are neither mammals nor birds, making the reptiles technically a paraphyletic grouping. Despite this, the so-defined reptiles share many evolutionary, anatomical, developmental, physiological (e.g., ectothermia), and functional features. It is thus reasonable to talk about a "reptilian brain.

    Ludwig Edinger: The Vertebrate Series and Comparative Neuroanatomy

    No full text
    At the end of the nineteenth century, Ludwig Edinger completed the first comparative survey of the microscopic anatomy of vertebrate brains. He is regarded as the founder of the field of comparative neuroanatomy. Modern commentators have misunderstood him to have espoused an anti-Darwinian linear view of brain evolution, harkening to the metaphysics of the scala naturae. This understanding arises, in part, from an increasingly contested view of nineteenth-century morphology in Germany. Edinger did espouse a progressionist, though not strictly linear, view of forebrain evolution, but his work also provided carefully documented evidence that brain stem structures vary in complexity independently from one another and across species in a manner that is not compatible with linear progress. This led Edinger to reject progressionism for all brain structures other than the forebrain roof, based on reasoning not too dissimilar from those his successors used to dismiss it for the forebrain roof
    corecore