46 research outputs found
Follicular thyroglobulin (TG) suppression of thyroid-restricted genes involves the apical membrane asialoglycoprotein receptor and TG phosphorylation.
Follicular thyroglobulin (TG) decreases expression of the thyroid-restricted transcription factors, thyroid transcription factor (TTF)-1, TTF-2, and Pax-8, thereby suppressing expression of the sodium iodide symporter, thyroid peroxidase, TG, and thyrotropin receptor genes (Suzuki, K., Lavaroni, S., Mori, A., Ohta, M., Saito, J., Pietrarelli, M., Singer, D. S., Kimura, S., Katoh, R., Kawaoi, A. , and Kohn, L. D. (1997) Proc. Natl. Acad. Sci. U. S. A. 95, 8251-8256). The ability of highly purified 27, 19, or 12 S follicular TG to suppress thyroid-restricted gene expression correlates with their ability to bind to FRTL-5 thyrocytes and is inhibited by a specific antibody to the thyroid apical membrane asialoglycoprotein receptor (ASGPR), which is related to the ASGPR of liver cells. Phosphorylating serine/threonine residues of TG, by autophosphorylation or protein kinase A, eliminates TG suppression and enhances transcript levels of the thyroid-restricted genes 2-fold in the absence of a change in TG binding to the ASGPR. Follicular TG suppression of thyroid-restricted genes is thus mediated by the ASPGR on the thyrocyte apical membrane and regulated by a signal system wherein phosphorylation of serine/threonine residues on the bound ligand is an important component. These data provide a hitherto unsuspected role for the ASGPR in transcriptional signaling, aside from its role in endocytosis. They establish a functional role for phosphorylated serine/threonine residues on the TG molecule
Role of the Asialoglycoprotein Receptor in Binding and Entry of Hepatitis C Virus Structural Proteins in Cultured Human Hepatocytes
We used a baculovirus-based system to prepare structural proteins of hepatitis C virus (HCV) genotype 1a. Binding of this preparation to cultured human hepatic cells was both dose dependent and saturable. This binding was decreased by calcium depletion and was partially prevented by ligands of the asialoglycoprotein receptor (ASGP-R), thyroglobulin, asialothyroglobulin, and antibody against a peptide in the carbohydrate recognition domain of ASGP-R but not preimmune antibody. Uptake by hepatocytes was observed with both radiolabeled and dye-labeled HCV structural proteins. With hepatocytes expressing the hH1 subunit of the ASGP-R fused to green fluorescent protein, we could show by confocal microscopy that dye stain cointernalized with the fusion protein in an area surrounding the nucleus. Internalization was more efficient with a preparation containing p7 than with one that did not. The two preparations bound to transfected 3T3-L1 cells expressing either both (hH1 and hH2) subunits of the ASGP-R (3T3-22Z cells) or both hH1 and a functionally defective variant of hH2 (3T3-24X cells) but not to parental cells. Additionally, uptake of dye-labeled preparation containing p7 was observed with 3T3-22Z cells but not with 3T3-L1 or 3T3-24X cells or with the preparation lacking p7, suggesting that p7 regulates the internalization properties of HCV structural proteins. Our observations suggest that HCV structural proteins bind to and cointernalize with the ASGP-R in cultured human hepatocytes
Metformin Dysregulates the Unfolded Protein Response and the WNT/β-Catenin Pathway in Endometrial Cancer Cells through an AMPK-Independent Mechanism
Multiple lines of evidence suggest that metformin, an antidiabetic drug, exerts anti-tumorigenic effects in different types of cancer. Metformin has been reported to affect cancer cells’ metabolism and proliferation mainly through the activation of AMP-activated protein kinase (AMPK). Here, we show that metformin inhibits, indeed, endometrial cancer cells’ growth and induces apoptosis. More importantly, we report that metformin affects two important pro-survival pathways, such as the Unfolded Protein Response (UPR), following endoplasmic reticulum stress, and the WNT/β-catenin pathway. GRP78, a key protein in the pro-survival arm of the UPR, was indeed downregulated, while GADD153/CHOP, a transcription factor that mediates the pro-apoptotic response of the UPR, was upregulated at both the mRNA and protein level. Furthermore, metformin dramatically inhibited β-catenin mRNA and protein expression. This was paralleled by a reduction in β-catenin transcriptional activity, since metformin inhibited the activity of a TCF/LEF-luciferase promoter. Intriguingly, compound C, a well-known inhibitor of AMPK, was unable to prevent all these effects, suggesting that metformin might inhibit endometrial cancer cells’ growth and survival through the modulation of specific branches of the UPR and the inhibition of the Wnt/β-catenin pathway in an AMPK-independent manner. Our findings may provide new insights on the mechanisms of action of metformin and refine the use of this drug in the treatment of endometrial cancer
Cytotoxicity of dental resin composites: an in vitro evaluation
Resin-based dental restorative materials release residual monomers that may affect the vitality of pulp cells. The purpose of this study was to evaluate the cytotoxic effect of two light-cured restorative materials with and without bis-GMA resin, respectively (Clearfil Majesty Posterior and Clearfil Majesty Flow) and a self-curing one (Clearfil DC Core Automix) when applied to the fibroblast cell line NIH-3T3. Samples of the materials were light-cured and placed directly in contact to cells for 24, 48, 72 and 96 h. Cytotoxicity was evaluated by measuring cell death by flow cytometry, cell proliferation by proliferation curves analysis and morphological changes by optical microscopy analysis. All the composite materials tested caused a decrease in cell proliferation, albeit at different degrees. However, only Clearfil DC Core Automix induced cell death, very likely by increasing apoptosis. Morphological alteration of treated cells was also evident, particularly in the Clearfil DC Core Automix-treated cells. The different cytotoxic effects of dental composites should be considered when selecting an appropriate resin-based dental restorative material for operative restorations
Folding of thyroglobulin in the calnexin/calreticulin pathway and its alteration by loss of Ca2+ from the endoplasmic reticulum.
During its initial folding in the endoplasmic reticulum (ER), newly synthesized thyroglobulin (Tg) is known to interact with calnexin and other ER molecular chaperones, but its interaction with calreticulin has not been examined previously. In the present study, we have investigated the interactions of endogenous Tg with calreticulin and with several other ER chaperones. We find that, in FRTL-5 and PC-Cl3 cells, calnexin and calreticulin interact with newly synthesized Tg in a carbohydrate-dependent manner, with largely overlapping kinetics that are concomitant with the maturation of Tg intrachain disulphide bonds, preceding Tg dimerization and exit from the ER. Calreticulin co-precipitates more newly synthesized Tg than does calnexin; however, using two different experimental approaches, calnexin and calreticulin were found in ternary complexes with Tg, making this the first endogenous protein reported in ternary complexes with calnexin and calreticulin in the ER of live cells. Depletion of Ca(2+) from the ER elicited by thapsigargin (a specific inhibitor of ER Ca(2+)-ATPases) results in retention of Tg in this organelle. Interestingly, thapsigargin treatment induces the premature exit of Tg from the calnexin/calreticulin cycle, while stabilizing and prolonging interactions of Tg with BiP (immunoglobulin heavy chain binding protein) and GRP94 (glucose-regulated protein 94), two chaperones whose binding is not carbohydrate-dependent. Our results suggest that calnexin and calreticulin, acting in ternary complexes with a large glycoprotein substrate such as Tg, might be engaged in the folding of distinct domains, and indicate that lumenal Ca(2+) strongly influences the folding of exportable glycoproteins, in part by regulating the balance of substrate binding to different molecular chaperone systems within the ER
Mixed-Disulfide Folding Intermediates between Thyroglobulin and Endoplasmic Reticulum Resident Oxidoreductases ERp57 and Protein Disulfide Isomerase
We present the first identification of transient folding intermediates of endogenous thyroglobulin (Tg; a large homodimeric secretory glycoprotein of thyrocytes), which include mixed disulfides with endogenous oxidoreductases servicing Tg folding needs. Formation of disulfide-linked Tg adducts with endoplasmic reticulum (ER) oxidoreductases begins cotranslationally. Inhibition of ER glucosidase activity blocked formation of a subgroup of Tg adducts containing ERp57 while causing increased Tg adduct formation with protein disulfide isomerase (PDI), delayed adduct resolution, perturbed oxidative folding of Tg monomers, impaired Tg dimerization, increased Tg association with BiP/GRP78 and GRP94, activation of the unfolded protein response, increased ER-associated degradation of a subpopulation of Tg, partial Tg escape from ER quality control with increased secretion of free monomers, and decreased overall Tg secretion. These data point towards mixed disulfides with the ERp57 oxidoreductase in conjunction with calreticulin/calnexin chaperones acting as normal early Tg folding intermediates that can be “substituted” by PDI adducts only at the expense of lower folding efficiency with resultant ER stress