15 research outputs found

    Leishmania-Specific Surface Antigens Show Sub-Genus Sequence Variation and Immune Recognition

    Get PDF
    Single-celled Leishmania parasites, transmitted by sand flies, infect humans and other mammals in many tropical and sub-tropical regions, giving rise to a spectrum of diseases called the leishmaniases. Species of parasite within the Leishmania genus can be divided into two groups (referred to as sub-genera) that are separated by up to 100 million years of evolution yet are highly related at the genome level. Our research is focused on identifying gene differences between these sub-genera that may identify proteins that impact on the transmission and pathogenicity of different Leishmania species. Here we report the presence of a highly-variant genomic locus (OHL) that was previously described as absent in parasites of the L. (Viannia) subgenus (on the basis of lack of key genes) but is present and well-characterised (as the LmcDNA16 locus) in all members of the alternative subgenus, L. (Leishmania). We demonstrate that the proteins encoded within the LmcDNA16 and OHL loci are similar in their structure and surface localisation in mammalian-infective amastigotes, despite significant differences in their DNA sequences. Most importantly, we demonstrate that the OHL locus proteins, like the HASP proteins from the LmcDNA16 locus, contain highly variable amino acid repeats that are antigenic in man and may therefore contribute to future vaccine development

    The role of natural killer cells in the early period of infection in murine cutaneous leishmaniasis

    No full text
    In order to study the role of natural killer (NK) cells during the early period of Leishmania infection, BALB/c mice were selectively and permanently depleted of NK cells by injection with 90Sr and subsequently infected with Leishmania (Leishmania) amazonensis (HSJD-1 strain). 90Sr is known to selectively deplete NK cells, leaving an intact T- and B-cell compartment and preserving the ability to produce both interferon alpha and IL-2. This method of depletion has advantages when compared with depletion using anti-NK cell monoclonal antibodies because the effect is permanent and neither activates complement nor provokes massive cell death. In the present study, after one month of treatment with 90Sr, the depletion of NK cells was shown by a more than ten-fold reduction in the cytotoxic activity of these cells: 2 x 106 spleen cells from NK-depleted animals were required to reach the same specific lysis of target cells effected by 0.15 x 106 spleen cells from normal control animals. The histopathology of the skin lesion at 7 days after Leishmania infection showed more parasites in the NK cell-depleted group. This observation further strengthens a direct role of NK cells during the early period of Leishmania infection
    corecore