19 research outputs found

    Hot subdwarf binaries - Masses and nature of their heavy compact companions

    Full text link
    Neutron stars and stellar-mass black holes are the remnants of massive stars, which ended their lives in supernova explosions. These exotic objects can only be studied in relatively rare cases. If they are interacting with close companions they become bright X-ray sources. If they are neutron stars, they may be detected as pulsars. Only a few hundred such systems are presently known in the Galaxy. However, there should be many more binaries with basically invisible compact objects in non-interacting binaries. Here we report the discovery of unseen compact companions to hot subdwarfs in close binary systems. Hot subdwarfs are evolved helium-core-burning stars that have lost most of their hydrogen envelopes, often due to binary interactions. Using high-resolution spectra and assuming tidal synchronisation of the subdwarfs, we were able to constrain the companion masses of 32 binaries. While most hot subdwarf binaries have white-dwarf or late-type main sequence companions, as predicted by binary evolution models, at least 5% of the observed subdwarfs must have very massive companions: unusually heavy white dwarfs, neutron stars and, in some cases, even black holes. We present evolutionary models which show that such binaries can indeed form if the system has evolved through two common-envelope phases. This new connection between hot subdwarfs, which are numerous in the Galaxy, and massive compact objects may lead to a tremendous increase in the number of known neutron stars and black holes and shed some light on this dark population and its evolutionary link to the X-ray binary population.Comment: 8 pages, 5 figures, to appear in the Journal of Physics Conference Proceedings (JPCS) for the 16th European White Dwarf Workshop, Barcelona, Spain, June 30 - July 11, 200

    Constraining the degree of the dominant mode in QQ Vir

    Full text link
    We present early results of the application of a method which uses multicolor photometry and spectroscopy for \ell discrimination. This method has been successfully applied to the pulsating hot subdwarf Balloon 090100001. Here we apply the method to QQ Vir (PG1325+101). This star was observed spectroscopically and photometrically in 2008. Details on spectroscopy can be found in Telting et al. (2010) while photometry and preliminary results on \ell discrimination are provided here. The main aim of this work was to compare the value of the \ell parameter derived for the main mode in QQ Vir to previously published values derived by using different methods.Comment: Proceedings of The Fourth Meeting on Hot Subdwarf Stars and Related Objects held in China, 20-24 July 2009. Accepted for publication in Astrophysics and Space Scienc
    corecore